首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   324篇
  免费   26篇
  国内免费   6篇
测绘学   9篇
大气科学   25篇
地球物理   89篇
地质学   118篇
海洋学   23篇
天文学   62篇
自然地理   30篇
  2022年   2篇
  2021年   4篇
  2020年   7篇
  2019年   10篇
  2018年   7篇
  2017年   12篇
  2016年   17篇
  2015年   16篇
  2014年   15篇
  2013年   15篇
  2012年   18篇
  2011年   23篇
  2010年   13篇
  2009年   38篇
  2008年   17篇
  2007年   13篇
  2006年   12篇
  2005年   8篇
  2004年   7篇
  2003年   9篇
  2002年   11篇
  2001年   7篇
  2000年   2篇
  1999年   5篇
  1998年   3篇
  1996年   1篇
  1995年   2篇
  1993年   2篇
  1992年   2篇
  1991年   1篇
  1990年   1篇
  1989年   1篇
  1988年   3篇
  1987年   1篇
  1986年   1篇
  1985年   5篇
  1984年   6篇
  1983年   7篇
  1982年   4篇
  1981年   1篇
  1980年   4篇
  1979年   1篇
  1978年   5篇
  1977年   5篇
  1976年   1篇
  1974年   2篇
  1973年   4篇
  1969年   1篇
  1957年   1篇
  1898年   2篇
排序方式: 共有356条查询结果,搜索用时 437 毫秒
51.
The cosmic microwave background (CMB) polarization and the 21-cm line fluctuations are powerful probes of cosmological reionization. We study how the cross-correlation between the CMB polarization ( E modes) and the 21-cm line fluctuations can be used to gain further understanding of the reionization history, within the framework of inhomogeneous reionization. Since the E -mode polarization reflects the amplitude of the quadrupole component of the CMB temperature fluctuations, the angular power spectrum of the cross-correlation exhibits oscillations at all multipoles. The first peak of the power spectrum appears at the scale corresponding to the quadrupole at the redshift, which is probed by the 21-cm line fluctuations. The peak reaches its maximum value in redshift when the average ionization fraction of the universe is about half. On the other hand, on small scales, there is a damping that depends on the duration of reionization. Thus, the cross-correlation between the CMB polarization and the 21-cm line fluctuations has the potential to accurately constrain the epoch and the duration of reionization.  相似文献   
52.
High concentrations of calcite fossil granules produced by earthworms (ECG) have been identified in most of the stratigraphical units along the loess‐palaeosol reference sequence of Nussloch (Germany). They are particularly abundant in interstadial brown soils and in tundra gley horizons, the latter reflecting short‐term phases of aggradation then degradation of permafrost. These granules are characterized by a radial crystalline structure produced in the earthworms by specific bio‐mineralization processes. In our study, we used this biological indicator combined with 14C and OSL dating, and sedimentological parameters to characterize millennial‐time scale climatic variations recorded in loess sequences. The approach is based on high‐resolution counts of ECG throughout a 17‐m‐thick loess sequence (332 samples). Strong increases in granule and mollusc concentrations suggest warmer climate conditions during palaeosol formation phases, associated with increasing biodiversity, biological activity and vegetation cover. Decreased granule concentrations occur within primary loess deposits, indicating a strong correlation with palaeoenvironmental conditions and demonstrating the reliability of ECG concentration variations as a new palaeoenvironmental proxy. Finally, this pattern is also recorded in loess sequences located about 600 km westward in northern France demonstrating the large‐scale validity of this new palaeoclimatic proxy.  相似文献   
53.
54.
Experimental and predicted thermochemical constants are used to assess the formation and stability of lead phosphates in soil and sedimentary environments. For the chemical conditions likely to be encountered in oxidizing environments, the stability fields of pyromorphites [Pb5(PO4)3X, X = OH?, Cl?, Br? and F?] and plumbogummite [PbAl3(PO4)2(OH)5-H2O] predominate strongly over those of the other secondary lead minerals. The theoretical phase relationships together with several field observations are used as the basis for suggesting that the interaction of lead and phosphorus (to form pyromorphites and plumbogummite in particular) is an important buffer mechanism controlling the migration and fixation of lead in the environment. Calculations using the concentrations of lead and phosphate ions in serum indicate that the solubility of lead phosphates may be the limiting factor with regard to lead ion concentration in human body. The removal of lead from wastewater by precipitation as lead chloropyromorphite is considered a spin-off of possible industrial interest.  相似文献   
55.
Low‐frequency passive integrated transponders (PIT tags), are commonly used for monitoring pebble mobility in gravel‐bed rivers. Although early studies reported high recovery rates for PIT tags used in small streams, recovery rates in larger systems remain low, substantially limiting the possibilities for their use in such rivers. These low recovery rates are potentially due to missed detections caused by tag signal collision, burial in the sediment layer deeper than the maximum detection range and insufficient (but still exhausting) field effort to cover the concerned areas. A potential solution for addressing these problems is to use active ultra‐high frequency (a‐UHF) transponders as these have a greater detection range and anti‐collision protocols. In order to assess the potential of such transponders for pebble tracking in rivers, we used 433.92 MHz COIN‐ID and COIN‐HC models (ELA Innovation Company, Montpellier, France). We completed several tests to (i) characterize transponder detection ranges in the water and in saturated sediment and (ii) develop field protocols for locating tags by combining global positioning systems (GPS) sites and transponder received signal strength indication (RSSI) levels. The results showed that (i) the maximum detection ranges are about 2.4 m in the water column and more than 2.6 m in a column of saturated gravelly‐sandy sediment, (ii) RSSI spatial interpolation can be used to determine transponder position with good accuracy (< 1 m), (iii) the desired minimal level of accuracy can be adjusted depending on in‐field effort and signal impulse interval, (iv) the RSSI maximal value observed cannot yet be used to determine transponder burial depth because of the multipath propagation of radio frequencies and the semi‐directional emission of the tag signal. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   
56.
The self‐centering rocking steel frame is a seismic force resisting system in which a gap is allowed to form between a concentrically braced steel frame and the foundation. Downward vertical force applied to the rocking frame by post‐tensioning acts to close the uplifting gap and thus produces a restoring force. A key feature of the system is replaceable energy‐dissipating devices that act as structural fuses by producing high initial system stiffness and then yielding to dissipate energy from the input loading and protect the remaining portions of the structure from damage. In this research, a series of large‐scale hybrid simulation tests were performed to investigate the seismic performance of the self‐centering rocking steel frame and in particular, the ability of the controlled rocking system to self‐center the entire building. The hybrid simulation experiments were conducted in conjunction with computational modules, one that simulated the destabilizing P‐Δ effect and another module that simulated the hysteretic behavior of the rest of the building including simple composite steel/concrete shear beam‐to‐column connections and partition walls. These tests complement a series of quasi‐static cyclic and dynamic shake table tests that have been conducted on this system in prior work. The hybrid simulation tests validated the expected seismic performance as the system was subjected to ground motions in excess of the maximum considered earthquake, produced virtually no residual drift after every ground motion, did not produce inelasticity in the steel frame or post‐tensioning, and concentrated the inelasticity in fuse elements that were easily replaced. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
57.
Previous geomorphological investigations using the traversing micro‐erosion meter (TMEM) have identified daily and hourly contractions and expansions of littoral rock on a range of lithologies. While organic influences on these patterns have been inferred, this has rarely been tested in a controlled way. Here, a TMEM was used to measure micro‐scale (<mm) topographic changes on supratidal limestone of the Massif des Calanques, southern France. Four TMEM monitoring sites (each 64 cm2) were set up in total, two in the Calanque de Morgiou and two in the Presqu'ile de Cassis. On both shores one TMEM bolt site was positioned on bare rock and the other on colonized rock. TMEM data were collected and the surface micro‐topography mapped for each site at two‐hourly intervals from early morning to late evening across one day in mid‐summer. Significant relative expansion and contraction was observed between measurement periods at all four sites, regardless of biofilm colonization (P < 0.001 in all instances), and sometimes between adjacent zones on the rock surface (at a scale of centimetres). Rock with and without biofilm behaved broadly similarly, but the magnitude of topographic change varied: average movement from one interval to the next was 0.03 mm on bare sites and 0.06 mm on biofilm‐colonized sites. As expected, patterns of surface change related largely to insolation, with greatest movement occurring in the morning and evening when thermal gradients were steepest. Interestingly, the presence of a biofilm intensified rock expansion, but delayed surface response to microclimatic variability. We largely attribute this effect to biofilm influences on surface albedo, and hypothesize that episodes of contraction and expansion are superimposed onto longer (annual to decadal) episodes of surface movement and downwearing. Short‐term TMEM studies therefore need to be coupled with longer‐term seasonal and annual measurements to improve understanding of rock surface dynamics. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
58.
Nonlinear dynamic analysis of existing or planned structures often requires the use of accelerograms that match a target design spectrum. Here, our main concern is to generate a set of motions with a good level of fit to the Eurocode 8 design spectra for France. Synthetic time series are generated by means of a non-stationary stochastic method. To calibrate the input parameters in the stochastic approach, we select a reference set of accelerograms for a Eurocode 8 type B site category from the PEER Ground-Motion Database, which are then adjusted to the target spectrum through wavelet addition. Then, we compute nonlinear seismic responses of a soil column, including pore pressure effects, and brittle and ductile structures to the stochastic time-series, the natural accelerograms and time-series generated using stationary stochastic approaches. The results of these calculations reveal considerable variability in response despite the similarities in terms of spectral acceleration.  相似文献   
59.
60.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号