首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   109篇
  免费   5篇
  国内免费   1篇
测绘学   2篇
大气科学   2篇
地球物理   28篇
地质学   37篇
海洋学   9篇
天文学   32篇
自然地理   5篇
  2024年   1篇
  2021年   6篇
  2020年   3篇
  2019年   1篇
  2018年   2篇
  2017年   5篇
  2016年   3篇
  2015年   2篇
  2014年   7篇
  2013年   2篇
  2012年   7篇
  2011年   4篇
  2010年   5篇
  2009年   3篇
  2008年   5篇
  2007年   9篇
  2006年   2篇
  2005年   5篇
  2004年   4篇
  2003年   6篇
  2002年   4篇
  2001年   3篇
  2000年   4篇
  1999年   2篇
  1998年   2篇
  1996年   1篇
  1995年   1篇
  1994年   4篇
  1993年   2篇
  1991年   2篇
  1987年   1篇
  1983年   1篇
  1982年   3篇
  1981年   2篇
  1972年   1篇
排序方式: 共有115条查询结果,搜索用时 15 毫秒
21.
The large organic matter flow in tropical coastal areas is recognized as an important process in the global carbon(C)cycle.However,the nature of organic matter flow in semi-enclosed tropical estuaries remains unclear due to the various environmental processes(tidal change,river flow,waves from the sea,and internal circulation)and organic matter sources therein.Thus,sediment organic matter(SOM)sources,and their distribution pattern,are key to understanding ecosystem material flow.Our research in the Batan Bay Estuary,Philippines,a semi-enclosed estuary under large mangrove deforestation,was conducted to determine ecosystem properties through analysis of C and nitrogen stable isotope ratios and environmental factors.First,we determined that mangrove litter,microphytobenthos,and phytoplankton are the main SOM sources in the Batan Bay Estuary.Second,the estuary was classified into three ecological zones(the Bay zone,Back-barrier zone,and River zone).In addition,we estimated SOM source ratios using the Stable Isotope Analysis in R package and determined different organic matter sources in different zone.The high ratios of mangrove litter as SOM indicate that a large amount of terrestrial plant organic matter remains despite the heavy mangrove deforestation that has occurred since the 1980s,and that the Back-barrier zone consists of a different type of ecosystem that promotes accumulation of C from mangrove litter and microphytobenthos.  相似文献   
22.
Spinifex-like textured metaperidotites from the Higo Metamorphic Rocks (HMR), west-central Kyushu, Japan, may be formed by high-pressure dehydration of antigorite, and may indicate deep subduction of serpentinite reaching a pressure–temperature condition of 1.6 GPa and 740–750 °C. Three rock types have been identified based on mineral assemblage and rock texture: Type I (L) consisting of medium-grained (1–5 cm long) olivine + enstatite + chromite ±tremolite with secondary talc and anthophyllite that occurs in low-grade metamorphic rocks of the biotite zone, Type I (H) of coarse-grained (up to 10 cm long) olivine + enstatite (with clinoenstatite lamella) + chromite ±tremolite with secondary talc that occurs in high-grade metamorphic rocks of the garnet-cordierite zone, and Type II composed of Al-spinel + chlorite + olivine + apatite + ilmenite with minor sodic gedrite in the garnet-cordierite zone together with Type I (H). Olivines in all rock types are mostly serpentinized during exhumation. The chromite-olivine thermometer gives 560–690 °C for Type I (L) rocks, and the spinel-olivine thermometer gives 610–740 °C for Type II rocks. The peak metamorphic pressure will be higher than 1.6 GPa based on the location of the experimentally determined invariant point (P = 1.6 GPa and T = 670 °C) of antigorite + forsterite + enstatite + talc + H2O. This estimate is consistent with the occurrence of chlorite in Type II rocks, which is stable up to 890 °C at 2.0 GPa. The spinifex-like textured metaperidotites occur as small bodies in the low P/T type gneisses, implying tectonic juxtaposition of them probably during exhumation of the HMR. Recent findings of medium pressure (0.9–1.2 GPa) granulites and gneisses from the HMR may indicate that the HMR has a deep root into the wedge mantle from which the spinifex-like textured metaperidotites have derived.  相似文献   
23.
The present study examines the petrology and geochemistry of the Early Paleozoic Motai serpentinites, the South Kitakami Belt, northeast Japan, to reveal the subduction processes and tectonics in the convergent margin of the Early Paleozoic proto-East Asian continent. Protoliths of the serpentinites are estimated to be harzburgite to dunite based on the observed amounts of bastite (orthopyroxene pseudomorph). Relic chromian spinel Cr# [=Cr/(Cr + Al)] increases with decreasing amount of bastite. The compositional range of chromian spinel is similar to that found in the Mariana forearc serpentinites. This fact suggests that the protoliths of the serpentinites are depleted mantle peridotites developed beneath the forearc regions of a subduction zone. The Motai serpentinites are divided into two types, namely, Types 1 and 2 serpentinites; the former are characterized by fine-grained antigorite and lack of olivine, and the latter have coarse-grained antigorite and inclusion-rich olivine. Ca-amphibole occurs as isolated crystals or vein-like aggregates in the Type 1 serpentinites and as needle-shaped minerals in the Type 2 serpentinites. Ca-amphibole of the Type 1 serpentinites is more enriched in LILEs and LREEs, suggesting the influence of hydrous fluids derived from slabs. By contrast, the mineral assemblage, mineral chemistry, and field distribution of the Type 2 serpentinites reflect the thermal effect of contact metamorphism by Cretaceous granite. The Ca-amphibole of the Type 1 serpentinites is different from that of the Hayachine–Miyamori Ophiolite in terms of origin; the latter was formed by the infiltration of melts produced in an Early Paleozoic arc–backarc system. Chemical characteristics of the Ca-amphibole in the ultramafic rocks in the South Kitakami Belt reflect the tectonics of an Early Paleozoic mantle wedge, and the formation of the Motai metamorphic rocks in the forearc region of the Hayachine–Miyamori subduction zone system, which occurred at the Early Paleozoic proto-East Asian continental margin.  相似文献   
24.
Marble has a great potential to understand a history of various geological events occurring during tectonic processes. In order to decode metamorphic–metasomatic records on C–O isotope compositions of marble at mid-crustal conditions, we conducted a C–O–Sr isotope study on upper amphibolite-facies marbles and a carbonate–silicate rock from the Hida Belt, which was once a part of the crustal basement of the East Asian continental margin. Carbon and oxygen isotope analyses of calcite from marbles (Kamioka area) and a carbonate–silicate rock (Wadagawa area) show a large variation of δ13C [VPDB] and δ18O [VSMOW] values (from −4.4 to +4.2 ‰ and +1.6 to +20.8 ‰, respectively). The low δ13C values of calcites from the carbonate–silicate rock (from −4.4 to −2.9 ‰) can be explained by decarbonation (CO2 releasing) reactions; carbon–oxygen isotope modeling suggests that a decrease of δ13C strongly depends on the amount of silicate reacting with carbonates. The occurrence of metamorphic clinopyroxene in marbles indicates that all samples have been affected by decarbonation reactions. All δ18O values of calcites are remarkably lower than the marine-carbonate values. The large δ18O variation can be explained by the isotope exchange via interactions between marble, external fluids, and/or silicates. Remarkably low δ18O values of marbles that are lower than mantle value (~+5 ‰) suggest the interaction with meteoric water at a later stage. Sr isotope ratios (87Sr/86Sr = 0.707255–0.708220) might be close to their protolith values. One zircon associated with wollastonite in a marble thin-section yields a U–Pb age of 222 ± 3 Ma, which represents the timing of the recrystallization of marble, triggered by H2O-rich fluid infiltration at a relatively high-temperature condition. Our isotope study implies that the upper amphibolite-facies condition, like the Hida Belt, might be appropriate to cause decarbonation reactions which can modify original isotope compositions of marble if carbonates react with silicates.  相似文献   
25.
26.
Phytoplankton primary production and its regulation by light and nutrient availability were investigated in the shallow, tropical coastal waters of Bandon Bay, Southern Thailand. The bay was meso‐eutrophicated and highly turbid, receiving river water discharge. Water column stratification was consistently weak during both rainy and dry seasons. Dissolved inorganic nitrogen (DIN) was higher off the river mouth than in the other regions, suggesting that river water discharge was a main source of DIN. By contrast, dissolved inorganic phosphorus (DIP) showed a significant negative correlation with total water depth, implying that regeneration around the sea floor was an important source of DIP. Surface DIN and DIP showed positive correlations with surface primary production (PP) and water column primary productivity (ΣPP*), respectively. The combined correlation and model analyses indicate that total water depth had an ambivalent influence on water column primary production (ΣPP); shallower water depth induced more active regeneration of nutrients, but it also caused higher turbidity and lower light availability as a result of enhanced resuspension of sediments. Furthermore, there was a vertical constraint for phytoplankton during the rainy season: total water depth tended to be shallower than euphotic zone depth. In conclusion, light limitation and vertical constraint owing to shallow water depth appear to be more important than nutrient limitation for water column primary production in Bandon Bay.  相似文献   
27.
The displacement of a relatively small reactivated landslide in a snowy area in Japan was monitored over a long period. The displacement rate of the landslide, which was approximately of 20 mm d?1 before the formation of snow cover, decelerated drastically during the continuous snow cover period every winter period. Possible causes included reduction in the amount of water that reached the ground surface (MR: meltwater and/or rainwater) and increase in snow load. Given that the actual displacement of the landslide was far below the predicted value based on the relationship between landslide displacement and MR immediately before the continuous snow cover period, the deceleration of landslide displacement was more likely attributable to the increase in snow load than to the reduction in MR. An investigation of the link between snow load and landslide displacement showed a negative logarithmic relationship. A dynamic analysis based on the limit equilibrium method showed that snow load increases the effective normal stress and the stability of a landslide in which the mean inclination angle of the slip surface is smaller than the internal friction angle. The stability of the actual slope was also analyzed by conducting soil tests on samples collected at the site and using the resultant parameters. The analysis also showed that the increase in snow load increases the safety factor and reduces the landslide displacement. The displacement of a relatively small landslide that has a shallow slip surface was found to be greatly influenced by snow cover.  相似文献   
28.
29.
Carbon sources were estimated by measuring carbon isotope ratios (??13C and ??14C) with accelerator mass spectrometry (AMS) in forest soils of different lithology. Six locations were selected in temperate deciduous and coniferous stands in Slovenia (?irovski vrh, Idrija, Ko?evski Rog, Pohorje, Gori?nica, and Rakitna), where carbonate rocks consisting of limestone and dolomite are abundant as underlying bedrock. Carbon isotope fractionation would not have occurred in two carbonaceous soils, since the values of both ??13C and ??14C changed consistently in these soils after thermal (550°C, 2?h) or chemical (1?M HCl, 24?h) treatments. Organic components were found to be predominant carbon sources (70?C100%) in the uppermost portions (0?C2?cm in depth). In deeper portions at a depth of about 30?C35?cm, soil carbon may be derived completely from underlying carbonate minerals in Idria, western part of Slovenia. The Combination of heat and chemical treatments with AMS provides practical information on soil carbon sources in carbonaceous soils.  相似文献   
30.
New geochemical and Sr–Nd isotopic data for the Iratsu eclogite and surrounding metamorphic rocks of the Sanbagawa belt, Japan, show that, while the protoliths of the metamorphic rocks formed in a variety of tectonic settings, the Iratsu body represents a deeply subducted and accreted island arc. The igneous protoliths of eclogites and garnet amphibolites were probably generated from a mantle source that had components of both a depleted mantle modified by slab-released fluid (as seen in a negative Nb anomaly) and an enriched mantle, similar to that of ocean island basalts (OIB). Fractional crystallization modeling indicates that the protoliths of some garnet clinopyroxenites from the Iratsu body are cumulates from a basaltic magma that crystallized under high O2 and H2O fugacities in the middle to lower crust. The source characteristics and crystallization conditions suggest that the protoliths of the Iratsu rocks formed in an oceanic island arc. Quartz eclogites from the marginal zone of the Iratsu body have geochemical signatures similar to turbidites from the Izu–Bonin island arc (as seen in a negative Nb anomaly and a concave REE pattern). The protoliths might be volcaniclastic turbidites that formed in a setting proximal to the oceanic island arc. Geochemical and isotopic signatures of the surrounding mafic schists are similar to normal (N-) and enriched (E-) mid-ocean-ridge basalt (MORB), and distinct from the rocks from the Iratsu body. The protoliths of the mafic schists likely formed in a plume-influenced mid-ocean ridge or back-arc basin. Pelitic schists from the surrounding rocks and pelitic gneisses from the marginal zone of the Iratsu body have evolved, continental geochemical signatures (as seen in a negative εNd(t) value (~?5)), consistent with their origin as continent-derived trench-fill turbidites.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号