首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   488篇
  免费   9篇
  国内免费   5篇
测绘学   17篇
大气科学   51篇
地球物理   91篇
地质学   223篇
海洋学   14篇
天文学   48篇
综合类   5篇
自然地理   53篇
  2022年   3篇
  2021年   7篇
  2020年   7篇
  2019年   5篇
  2018年   15篇
  2017年   14篇
  2016年   14篇
  2015年   16篇
  2014年   19篇
  2013年   25篇
  2012年   23篇
  2011年   25篇
  2010年   19篇
  2009年   18篇
  2008年   20篇
  2007年   24篇
  2006年   21篇
  2005年   13篇
  2004年   19篇
  2003年   16篇
  2002年   10篇
  2001年   10篇
  2000年   11篇
  1999年   9篇
  1998年   9篇
  1997年   9篇
  1996年   6篇
  1995年   15篇
  1993年   5篇
  1992年   3篇
  1991年   6篇
  1990年   8篇
  1989年   6篇
  1988年   7篇
  1987年   5篇
  1986年   6篇
  1985年   8篇
  1984年   6篇
  1983年   3篇
  1981年   4篇
  1980年   4篇
  1979年   5篇
  1978年   3篇
  1977年   2篇
  1976年   2篇
  1975年   2篇
  1974年   2篇
  1970年   2篇
  1967年   2篇
  1966年   4篇
排序方式: 共有502条查询结果,搜索用时 15 毫秒
141.
142.
In this study, the Precipitation‐Runoff Modelling System (PRMS) was used to simulate changes in surface‐water depression storage in the 1,126‐km2 Upper Pipestem Creek basin located within the Prairie Pothole Region of North Dakota, USA. The Prairie Pothole Region is characterized by millions of small water bodies (or surface‐water depressions) that provide numerous ecosystem services and are considered an important contribution to the hydrologic cycle. The Upper Pipestem PRMS model was extracted from the U.S. Geological Survey's (USGS) National Hydrologic Model (NHM), developed to support consistent hydrologic modelling across the conterminous United States. The Geospatial Fabric database, created for the USGS NHM, contains hydrologic model parameter values derived from datasets that characterize the physical features of the entire conterminous United States for 109,951 hydrologic response units. Each hydrologic response unit in the Geospatial Fabric was parameterized using aggregated surface‐water depression area derived from the National Hydrography Dataset Plus, an integrated suite of application‐ready geospatial datasets. This paper presents a calibration strategy for the Upper Pipestem PRMS model that uses normalized lake elevation measurements to calibrate the parameters influencing simulated fractional surface‐water depression storage. Results indicate that inclusion of measurements that give an indication of the change in surface‐water depression storage in the calibration procedure resulted in accurate changes in surface‐water depression storage in the water balance. Regionalized parameterization of the USGS NHM will require a proxy for change in surface‐storage to accurately parameterize surface‐water depression storage within the USGS NHM.  相似文献   
143.
Hesse  Roland F.  Zorndt  Anna  Fröhle  Peter 《Ocean Dynamics》2019,69(4):489-507
Ocean Dynamics - Net deposition in estuaries is often linked to the estuarine turbidity maximum zones, in which fine, cohesive sediments accumulate due to residual transport by the estuarine...  相似文献   
144.
This study examined the hysteresis exhibited in concentration–discharge (C–Q) relationships in the runoff from four hydrologically separated fields (catchments) at an intensively managed grassland. The objectives were to examine C–Q relationships constructed from high-resolution time series of flow, temperature, pH, conductivity, nitrate and turbidity, and their implications for hydrological processes. High-resolution datasets from the quality assured records of the Rothamsted Research North Wyke Farm Platform in the UK were examined using a graphical method and cross-correlation statistics. The study found that storm events based C–Q hysteresis reflects the cross-correlation that is generally hidden in time series analysis of large datasets, and that although Q and water quality variables can be effectively influenced by catchment size, the C–Q relationship is less significantly influenced. The dominant C–Q relationships of the water variables in the study area reflect that saturated overland flow was prevalent during the study period in the catchments, while the CCF results indicate coupled transfer of sediments and solute in the area at lag ≥ 0.
EDITOR D. Koutsoyiannis

ASSOCIATE EDITOR M. D. Fidelibus  相似文献   
145.
The internal deformation within debris flows holds essential information on dynamics and flow resistance of such mass-wasting processes. Systematic measurements of velocity profiles in real-scale debris flows are not yet available. Additionally, data on basal stresses of the solid and the fluid phase are rare. Here, we present and analyse measurements of vertical velocity profiles in two debris flows naturally occurring in the Gadria Creek, Italy. The method is based on cross-correlation of paired conductivity signals from an array of sensors installed on a fin-shaped wall located in the middle of the channel. Additionally, we measure normal stress and pore fluid pressure by two force plates with integrated pressure transducers. We find internal deformation throughout the flows. Only at the very front was some en-bloc movement observed. Velocity profiles varied from front to tail and between flows. For one debris flow, pore fluid pressure close to normal stress was measured, whereas the other flow was less liquefied. The median shear rates were mostly less than 5 s−1 and Savage numbers at the basal layer ranged from 0.01 to 1. Our results highlight the variable nature of debris flows and provide quantitative data on shear rate and basal stress distribution to help guide model development for hazard assessment and landscape evolution. © 2020 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd.  相似文献   
146.
Accurate determination of the tufa growth rate (TGR) is required to answer the fundamental geomorphological question of tufa evolution. The TGR has been measured by various direct and indirect methods. One of the most popular direct methods uses modified micro-erosion meter (MEM), which has several drawbacks. Here, we present for the first time a coordinate measuring macro-photogrammetry device (CMD) for monitoring the TGR in a contactless manner. The CMD was applied on 28 limestone plates at 14 locations within the Skradinski buk area, Croatia, and measurements were performed in the laboratory. The TGR was derived from digital tufa high-resolution models (DTHRMs). The accuracy of the device was evaluated using state-of-the-art three-dimensional (3D) scanners and error calculation at checkpoints. Moreover, the precision was evaluated with the split test (n = 5). A total of 74 DTHRMs with a spatial resolution of 0.0236 mm were created. The TGR ranged from 0.327 to 19.302 mm a−1, with an average of 5.771 mm a−1. A higher TGR was observed on the limestone plates near mosses, located in fast and turbulent water rather than in stagnant water. We found that specific micro-environmental factors (e.g. proximity to moss) positively affected tufa growth. Erosion events were observed, as well as the presence of aquatic insect larvae (Simuliidae and Chironomidae), which positively affected tufa growth. The CMD is a precise and accurate device that does not suffer from the drawbacks of the MEM method and has many other advantages. It has a high capability of tufa erosion detection, enables the identification of macroinvertebrates, and multispectral or hyperspectral cameras can be mounted on the device for spectral reflectance analysis of the tufa surface. The CMD can be applied in any study requiring a sub-millimetre data quality and involving the comparison of consecutive 3D models and derivation of various parameters of smaller objects. © 2020 John Wiley & Sons, Ltd.  相似文献   
147.
Hydrological monitoring in complex, dynamic northern floodplain landscapes is challenging, but increasingly important as a consequence of multiple stressors. The Peace-Athabasca Delta in northern Alberta, Canada, is a Ramsar Wetland of International Importance reliant on episodic river ice-jam flood events to recharge abundant perched lakes and wetlands. Improved and systematic monitoring of landscape-scale hydrological connectivity among freshwater ecosystems (rivers, channels, wetlands, and lakes) is needed to guide stewardship decisions in the face of climate change and upstream industrial development. Here, we use water isotope compositions, supplemented by measurements of specific conductivity and field observations, from 68 lakes and 9 river sites in May 2018 to delineate the extent and magnitude of spring ice-jam induced flooding along the Peace and Athabasca rivers. Lake-specific estimates of input water isotope composition (δI) were modelled after accounting for influence of evaporative isotopic enrichment. Then, using the distinct isotopic signature of input water sources, we develop a set of binary mixing models and estimate the proportion of input to flooded lakes attributable to river floodwater and precipitation (snow or rain). This approach allowed identification of areas and magnitude of flooding that were not captured by other methods, including direct observations from flyovers, and to demarcate flow pathways in the delta. We demonstrate water isotope tracers as an efficient and effective monitoring tool for delineating spatial extent and magnitude of an important hydrological process and elucidating connectivity in the Peace-Athabasca Delta, an approach that can be readily adopted at other floodplain landscapes.  相似文献   
148.
An algorithm is presented to retrieve the concentrations of chlorophyll a, suspended pariclulate matter and yellow substance from normalized water-leaving radiances of the Ocean Color and Temperature Sensor (OCTS) of the Advanced Earth Observing Satellite (ADEOS). It is based on a neural network (NN) algorithm, which is used for the rapid inversion of a radiative transfer procedure with the goal of retrieving not only the concentrations of chlorophyll a but also the two other components that determine the water-leaving radiance spectrum. The NN algorithm was tested using the NASA's SeaBAM (SeaWiFS Bio-Optical Mini-Workshop) test data set and applied to ADEOS/OCTS data of the Northwest Pacific in the region off Sanriku, Japan. The root-mean-square error between chlorophyll a concentrations derived from the SeaBAM reflectance data and the chlorophyll a measurements is 0.62. The retrieved chlorophyll a concentrations of the OCTS data were compared with the corresponding distribution obtained by the standard OCTS algorithm. The concentrations and distribution patterns from both algorithms match for open ocean areas. Since there are no standard OCTS products available for yellow substance and suspended matter and no in situ measurements available for validation, the result of the retrieval by the NN for these two variables could only be assessed by a general knowledge of their concentrations and distribution patterns. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
149.
Multichannel seismic reflection data from the Southern Kerguelen Plateau show many dipping basement reflectors associated with volcanic flows. These reflectors are quite similar in their shape to seaward-dipping basement reflectors observed along volcanic passive margins. On the Kerguelen Plateau the sources are updip of the basement reflectors, in the presently extinct and eroded volcanoes. We suggest that the same source/reflector geometry may also apply to the seaward-dipping basement reflectors observed along passive margins. We interpret these reflectors to be the result of volcanism on the passive margin which flowed in all directions into the newly created ocean basin at an early spreading stage.  相似文献   
150.
ABSTRACT Basic shallowing-upward cycles (shu-cycles) and five-bundled megacycles in the Latemar platform have been widely regarded as a model example for precessional and eccentricity forcing in the Mesozoic. Based on bio-/chronostratigraphic data, recent studies questioned this particular type of Milankovitch forcing on the Latemar cyclic series. We present an integrated model that incorporates (i) new cyclostratigraphic data, (ii) new and existing bio-/chronostratigraphic data and (iii) new spectral analyses. The basic shu-cycles in the Latemar reflect sub-Milankovitch control. Cycle bundles of 1 : 4–5 (megacycles : shu-cycles) indicate precessional forcing. They do not reflect eccentricity superimposed on precessional forcing. Spectral analyses reveal highly significant ratios in the large-scale cycle bundlings. Stacking patterns of 1 : 9.9 and 1 : 24.0 shu-cycles represent obliquity and short eccentricity forcing. Both sub-Milankovitch and Milankovitch forcing potentially controlled shallow subtidal carbonate deposition in Mesozoic greenhouse times. Cyclostratigraphic models require an integrated approach including bio- and chronostratigraphic data.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号