首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   189篇
  免费   3篇
  国内免费   2篇
大气科学   8篇
地球物理   56篇
地质学   50篇
海洋学   40篇
天文学   25篇
综合类   2篇
自然地理   13篇
  2021年   5篇
  2020年   1篇
  2019年   2篇
  2018年   4篇
  2017年   5篇
  2016年   6篇
  2015年   1篇
  2014年   8篇
  2013年   6篇
  2012年   9篇
  2011年   4篇
  2010年   7篇
  2009年   12篇
  2008年   10篇
  2007年   11篇
  2006年   10篇
  2005年   7篇
  2004年   5篇
  2003年   8篇
  2002年   6篇
  2001年   7篇
  2000年   2篇
  1999年   1篇
  1997年   2篇
  1996年   7篇
  1994年   4篇
  1993年   6篇
  1992年   4篇
  1990年   5篇
  1989年   1篇
  1988年   1篇
  1986年   1篇
  1985年   5篇
  1984年   5篇
  1983年   1篇
  1982年   3篇
  1981年   2篇
  1980年   2篇
  1979年   2篇
  1978年   2篇
  1977年   1篇
  1975年   1篇
  1972年   1篇
  1965年   1篇
排序方式: 共有194条查询结果,搜索用时 533 毫秒
81.
82.
Disturbances to forest catchments have profound effects on the environment of headwater streams and have an impact on suspended sediment (SS) management. Forest harvesting is a dominant factor in increasing SS yields. Road construction, skidder activity and ploughing associated with harvesting cause serious soil disturbance that results in SS increases. However, few studies have shown whether harvesting itself increases SS yields. This study examined how harvesting influenced SS yields in a steep forested area. During harvesting, soil surface disturbance was prevented as much as possible by using skyline logging treatments and piling branches and leaves at selected locations in the watershed. Using these methods, the representative SS rating curve did not change significantly after harvesting. The results also show that the characteristics of SS transport were related to the SS source area, and reveal that the riparian zone/stream bank was a dominant SS source area at the study site. Annual SS yields did not increase despite increasing annual water yields after harvesting. The limited water capacity of the soil at the study site likely led to only slight differences in pre‐ and post‐harvest water discharge from heavy rainfall events. Most SS was transported during heavy rainfall events, and increases in SS yields were not detected after harvesting. We concluded that it is possible to prevent post‐harvest SS increases by performing careful, low‐impact harvesting procedures. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   
83.
Near-infrared photometric and polarimetric observations of comet Hale-Bopp (1995 O1) using KONIC (Kiso Observatory Near-Infrared Camera) are reported. Observations were carried out on March 18 UT and April 26 UT 1997, when the heliocentric distances of the comet were 0.94 and 1.02 AU, and the phase angles were 48.5 deg and 32.9 deg, respectively. In the J, H, and K′ bands, we obtained linear polarization of the near-nucleus region of 16.4 ± 1.2, 18.8 ± 1.3, and 15.1 ± 0.9 percent on March 18UT and 7.1 ± 1.1, 8.9 ± 1.0, and 6.9 ± 0.6 percent on April 26, respectively. These values were higher than those observed for 1P/Halley. The maximum polarization was found at H band on both dates. Polarization maps showed higher polarization regions toward the anti-solar direction in the J and H bands. No distinct correlation was found between high polarization regions and bright regions. The projected expansion velocity of the arc structure of the dust jet was 375 ± 35.7 m/s on 17–19 March. The periodicity was found to be 11.1 ± 2.8 hours. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
84.
Recent geochemical and geophysical data suggest that the initial temperature of the Moon was strongly peaked toward the lunar surface. To explain such an initial temperature distribution, a simple model of accretion process of the Moon is presented. The model assumes that the Moon was formed from the accumulation of the solid particles or gases in the isolated, closed cloud. Two equations are derived to calculate the accretion rate and surface temperature of the accreting Moon. Numerical calculations are made for a wide range of the parameters particle concentration and particle velocity in the cloud. A limited set of the parameters gives the initial temperature profiles as required by geochemical and geophysical data. These models of the proto-moon cloud indicate that the lunar outershell, about 400 km thick, was partially or completely molten just after the accretion of the Moon and that the Moon should have been formed in a period shorter than 1000 yr. If the Moon formed at a position nearer to the Earth than its present one, the Moon might have been formed in a period of less than one year.On leave from Geophysical Institute, University of Tokyo.Contribution No. 2104, Division of Geological and Planetary Sciences, California Institute of Technology.  相似文献   
85.
A sulfide chimney ore sampled from the flank of the active Tiger vent area in the Yonaguni Knoll IV hydrothermal field, south Okinawa trough, consists of anhydrite, pyrite, sphalerite, galena, chalcopyrite and bismuthinite. Electron microprobe analysis indicates that the chalcopyrite contains up to 2.4 wt% Sn, whereas bismuthinite contains up to 1.7 wt% Pt, 0.8 wt% Cu and 0.5 wt% Fe. The Sn‐rich chalcopyrite and Pt–Cu–Fe‐bearing bismuthinite are the first reported occurrence of such minerals in an active submarine hydrothermal system. The results confirm that Sn enters the chalcopyrite as a solid solution towards stannite by the coupled substitution of Sn4+Fe2+ for Fe3+Fe3+, whereas Pt, Cu and Fe enter the bismuthinite structure as a solid solution during rapid nucleation. The fluid inclusions homogenization temperatures in anhydrite (220–310°C) and measured end‐member temperature of the vent fluids on‐site (325°C) indicate that Sn‐bearing chalcopyrite and Pt–Cu–Fe‐bearing bismuthinite express the original composition of the minerals that precipitated as metastable phases at a temperature above 300°C. The result observed in this study implies that sulfides in ancient volcanogenic massive sulfide deposits have similar trace element distribution during nucleation but it is remobilised during diagenesis, metamorphism or supergene enrichment processes.  相似文献   
86.
Highly forsteritic olivine (Fo: 99.2–99.7) in the Kaba meteorite emits bright cathodoluminescence (CL). CL spectra of red luminescent forsterite grains have two broad emission bands at approximately 630 nm (impurity center of divalent Mn ions) in the red region and above 700 nm (trivalent Cr ions) in the red–IR region. The cores of the grains show CL blue luminescence giving a characteristic broad band emission at 400 nm, also associated with minor red emissions related to Mn and Cr ions. CL color variation of Kaba forsterite is attributed to structural defects. Electron probe microanalyzer (EPMA) analysis shows concentrations of Ca, Al, and Ti in the center of the forsterite grain. The migration of diffusible ions of Mn, Cr, and Fe to the rim of the Kaba meteoritic forsterite was controlled by the hydrothermal alteration at relatively low temperature (estimated at about 250 °C), while Ca and Al ions might still lie in the core. A very unusual phase of FeO (wüstite) was also observed, which may be a terrestrial alteration product of FeNi‐metal.  相似文献   
87.
The isotopic and ionic composition of pure gas hydrate (GH) water was examined for GHs recovered in three gravity cores (165–193 cm length) from the Kukuy K-9 mud volcano (MV) in Lake Baikal. A massive GH sample from core St6GC4 (143–165 cm core depth interval) was dissociated progressively over 6 h in a closed glass chamber, and 11 sequentially collected fractions of dissociated GH water analyzed. Their hydrogen and oxygen isotopic compositions, and the concentrations of Cl and HCO3 remained essentially constant over time, except that the fraction collected during the first 50 minutes deviated partly from this pattern. Fraction #1 had a substantially higher Cl concentration, similar to that of pore water sampled immediately above (135–142 cm core depth) the main GH-bearing interval in that core. Like the subsequent fractions, however, the HCO3 concentration was markedly lower than that of pore water. For the GH water fractions #2 to #11, an essentially constant HCO3 /Cl ratio of 305 differed markedly from downcore pore water HCO3 /Cl ratios of 63–99. Evidently, contamination of the extracted GH water by ambient pore water probably adhered to the massive GH sample was satisfactorily restricted to the initial phase of GH dissociation. The hydrogen and oxygen isotopic composition of hydrate-forming water was estimated using the measured isotopic composition of extracted GH water combined with known isotopic fractionation factors between GH and GH-forming water. Estimated δD of ?126 to ?133‰ and δ18O of ?15.7 to ?16.7‰ differed partly from the corresponding signatures of ambient pore water (δD of ?123‰, δ18O of ?15.6‰) and of lake bottom water (δD of ?121‰, δ18O of ?15.8‰) at the St6GC4 coring site, suggesting that the GH was not formed from those waters. Observations of breccias in that core point to a possible deep-rooted water source, consistent with published thermal measurements for the neighboring Kukuy K-2 MV. By contrast, the pore waters of core St6GC4 and also of the neighboring cores GC2 and GC3 from the Kukuy K-9 MV show neither isotopic nor ionic evidence of such a source (e.g., elevated sulfate concentration). These findings constrain GH formation to earlier times, but a deep-rooted source of hydrate-forming water remains ambiguous. A possible long-term dampening of key deep-water source signatures deserves further attention, notably in terms of diffusion and/or advection, as well as anaerobic oxidation of methane.  相似文献   
88.
To determine for how long a landslide affects sediment discharge, the sediment yields of 15 check-dam basins were compared with the time series of landslide distributions in a mountain basin in the Tanzawa region, central Japan. The distribution of sediment yield was quantitatively estimated from deposition in the sediment pools of check dams. The relationship between the landslide history and sediment discharge in the Nakagawa River basin was examined for an approximately 80-year period. Two major landslide events occurred during this period: the 1923 Kanto Earthquake and the 1972 disaster caused by heavy rainfall. The resulting trend in sediment discharge of the whole basin, estimated using reservoir sedimentation in the Miho Dam at its base, was nearly constant, with high sediment discharge (2897 m3 km− 2 yr− 1) in the intervening quarter-century, despite the recovery of vegetation on landslide areas in this period. Comparisons of the landslide distributions resulting from the two disasters, the sediment yields of check-dam basins, and the sediment discharge of the whole basin indicate that recent sediment discharge contains landslide debris that was originated by the Kanto Earthquake that occurred over 80 years ago. Thus, to understand high sediment discharge, it is essential to investigate not only the current basin condition and recent events, but also the landslide history of the basin for at least the previous 100 years.  相似文献   
89.
We present a Hamiltonian particle method (HPM) with a staggered particle technique for simulating seismic wave propagation. In the conventional HPM, physical variables, such as particle displacement and stress, are defined at the center, i.e., at the same position, of each particle. As most seismic simulations using finite difference methods (FDM) are practiced with staggered grid techniques, we know the staggered alignment of space variables could improve the numerical accuracy. In the present study, we hypothesized that staggered technique could improve the numerical accuracy also in the HPM and tested the hypothesis. First, we conducted a plane wave analysis for the HPM with the staggered particles in order to verify the validity of our strategy. The comparison of grid dispersion in our strategy with that in the conventional one suggests that the accuracy would be improved dramatically by use of the staggered technique. It is also observed that the dispersion of waves is dependent on the propagation direction due to the difference in the average spacing of the neighboring two particles for the same parameters, as is usually observed in FDM with a rotated staggered grid. Next, we compared the results from the conventional Lamb’s problem using our HPM with those from an analytical approach in order to demonstrate the effectiveness of the staggered particle technique. Our results showed better agreement with the analytical solutions than those from HPM without the staggered particles. We conclude that the staggered particle technique would be a method to improve the calculation accuracy in the simulation of seismic wave propagation.  相似文献   
90.
Seiji Yasuda  Hitoshi Miura 《Icarus》2009,204(1):303-315
We carried out three-dimensional hydrodynamics simulations of the disruption of a partially-molten dust particle exposed to high-speed gas flow to examine the compound chondrule formation due to mutual collisions between the fragments (fragment-collision model; [Miura, H., Yasuda, S., Nakamoto, T., 2008a. Icarus194, 811-821]).In the shock-wave heating model, which is one of the most plausible models for chondrule formation, the gas friction heats and melts the surface of the cm-sized dust particle (parent particle) and then the strong gas ram pressure causes the disruption of the molten surface layer. The hydrodynamics simulation shows details of the disruptive motion of the molten surface, production of many fragments and their trajectories parting from the parent particle, and mutual collisions among them. In our simulation, we identified 32 isolated fragments extracted from the parent particle. The size distribution of the fragments was similar to that obtained from the aerodynamic experiment in which a liquid layer was attached to a solid core and it was exposed to a gas flow. We detected 12 collisions between the fragments, which may result in the compound chondrule formation. We also analyzed the paths of all the fragments in detail and found the importance of the shadow effect in which a fragment extracted later blocks the gas flow toward a fragment extracted earlier. We examined the collision velocity and impact parameter of each collision and found that 11 collisions should result in coalescence. It means that the ratio of coalescent bodies to single bodies formed in this disruption of a parent particle is Rcoa=11/(32-11)=0.52. We concluded that compound chondrule formation can occur just after the disruption of a cm-sized molten dust particle in shock-wave heating.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号