首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   276篇
  免费   11篇
  国内免费   4篇
测绘学   5篇
大气科学   25篇
地球物理   66篇
地质学   81篇
海洋学   80篇
天文学   17篇
综合类   1篇
自然地理   16篇
  2024年   2篇
  2023年   1篇
  2022年   2篇
  2021年   9篇
  2020年   3篇
  2019年   8篇
  2018年   10篇
  2017年   11篇
  2016年   10篇
  2015年   12篇
  2014年   11篇
  2013年   19篇
  2012年   11篇
  2011年   18篇
  2010年   11篇
  2009年   10篇
  2008年   14篇
  2007年   13篇
  2006年   8篇
  2005年   18篇
  2004年   11篇
  2003年   9篇
  2002年   8篇
  2001年   6篇
  2000年   8篇
  1999年   7篇
  1998年   3篇
  1997年   2篇
  1996年   5篇
  1995年   5篇
  1994年   4篇
  1993年   3篇
  1992年   1篇
  1991年   2篇
  1990年   3篇
  1988年   2篇
  1987年   2篇
  1986年   1篇
  1984年   2篇
  1981年   1篇
  1971年   1篇
  1970年   1篇
  1969年   1篇
  1968年   1篇
  1967年   1篇
排序方式: 共有291条查询结果,搜索用时 32 毫秒
31.
32.
Micro-scale distributions of trace and minor elements in, for example, coral skeletons are crucial as geochemical tracers of past environmental conditions, because they have the inherent advantage of accounting for confounding diagenetic and physiological effects. To extract reproducible paleoceanographic records from coral skeletons, a selective measurement of specific ultrastructures at high spatial resolution is required. Compared to warm-water reef-building corals, such data are limited in cold-water corals and, to the best of the authors’ knowledge, the latter have to date not been examined by means of micro-X-ray fluorescence. This technique was used for micrometer-scale imaging of P, Mg, Sr, O, and Fe intensities (counts per unit time) in a fossil specimen (as yet unknown age) of the cold-water coral Desmophyllum sp. from surface sediments of the NW Pacific. Cross plots confirmed that the micro-XRF signals were associated with corresponding trends in elemental concentration (ppm). Two major structural components of the septum—centers of calcification (COCs) and the surrounding fibrous aragonite portion—differed in composition. The COCs were characterized by higher intensities of P and Mg (650 and 220 counts per 5 s, respectively), and lower intensities of Sr (2,800) and O (580; corresponding values for the fibrous aragonite are 370, 180, 3,300 and 620 counts per 5 s, respectively). Oxygen intensity values were mostly homogeneous, but slightly lower in COCs and substantially higher in a well-defined patch in the fibrous aragonite. The mostly homogeneous P signals in the fibrous aragonite confirm the utility of this structural component and of coral septa in general for tracer studies of oceanic P. Nevertheless, spot occurrences of elevated P (>950 counts per 5 s) spanning tens of micrometers in specific parts of the fibrous region of the septum would cause overestimates of oceanic P, and should evidently not be overlooked in future research. The distribution of Fe showed no correlation with P, indicating no significant contamination in the form of P-bearing diagenetic ferromanganese precipitates. Such hotspots plausibly reflect the presence of other mineral phases, such as crystalline hydroxylapatite inclusions or contamination with organic material. The P signal intensity was positively correlated with Mg (r=0.553, p<0.001), and negatively with Sr (r=–0.489, p<0.001) and O (r=–0.311, p<0.001). There was no discernible evidence of control by water temperature in the Sr distribution pattern. These findings establish micro-X-ray fluorescence as a highly suitable pre-screening tool in cold-water coral sclerochronology, which can serve to refine sampling strategies without sample damage, and complement other micrometer-scale spatial distribution analyses of elements (notably, Ca) based on well-known approaches involving micro-milling, electron microprobes, secondary ion mass spectrometry, and laser ablation.  相似文献   
33.
The Bungo Channel in southwestern Japan receives both warm, called Kyucho, and cold deep-water intrusions (bottom intrusion) from the Pacific Ocean. Abundances of Prochlorococcus, Synechococcus, and eukaryotic picophytoplankton were monitored from 18 July to 17 August 2001 to clarify whether advected picophytoplankton from the Pacific Ocean can grow in the channel or not. Synechococcus cells were further discriminated into low- and high-PUB types according to their fluorescence property in flow cytometry. From 18 to 25 July, the water temperature decreased by 3 °C at a 5-m depth at all stations, indicating the occurrence of a bottom intrusion. From 25 July to 4 August, a Kyucho occurred and the water temperature rapidly increased. From 4 to 17 August, a bottom intrusion and a Kyucho both occurred twice, although the intensities were smaller than those occurring until 4 August. From 18 to 30 July, the abundance of both Prochlorococcus and a high-PUB type of Synechococcus drastically decreased because of a bottom intrusion; however, the abundances rapidly increased due to the advection by a Kyucho. These advected cells increased from 4 to 17 August in the channel and Kitanada Bay. Changes in the abundance of low-PUB type of Synechococcus and eukaryotic picophytoplankton were less noticeable than those in the abundance of Prochlorococcus and high-PUB type. The present study demonstrated that oceanic picophytoplankton advected by the Kyucho could grow in the channel. However, abundances of low-PUB type and eukaryotic picophytoplankton increased higher than those of Prochlorococcus and high-PUB type did. Thus, these oceanic phytoplankters will be excluded when Kyucho does not occur for a long time. The co-occurrence of various types of picophytoplankton found in the channel is probably achieved by both Kyucho event and their growth capability in the channel.  相似文献   
34.
Series of numerical experiments are performed using a general circulation model to gain insights on the hydrologic cycle on ancient Mars. Since the state of the ancient Mars atmosphere is not well constrained, we did not try to simulate an ancient Mars climate under warm and wet condition. In stead, we used an idealized model and tried to extract general features of the hydrologic cycle by modeling an ideal land planet that has no ocean on its surface. Four different climate regimes, “warm-upright,” “warm-oblique,” “frozen-upright,” and “frozen-oblique” regimes, are recognized depending on the inclination of the spin axis (obliquity) and average surface temperature. The period of active hydrologic cycle suggested from the geomorphology on Mars seems to be consistent with that at the “warm-oblique” regime, which appears at warm (above-freezing) environment with high-obliquity (higher than about 30°) condition.  相似文献   
35.
To investigate whether the biological toxicity of aquatic hypercapnia is due to the direct effects of CO2 or to the effects of acidification of seawater by CO2, the Japanese flounder (Paralichthys olivaceus) was subjected to seawater equilibrated with a gas mixture of air containing 5% CO2 (pH 6.18) or seawater acidified to the same pH with 1 N H2SO4. All the fish died within 72 h in the CO2 exposure group, whereas no mortality occurred in the acid group. Acid-base parameters as well as plasma ion concentrations were severely perturbed in the CO2 exposure group, whereas they were minimally affected in the acid group. These results clearly demonstrate that the mortality in the CO2 group is a direct result of the elevated levels of dissolved CO2 and not to the effects of the reduced water pH.  相似文献   
36.
Gully erosion is a major cause of soil loss and severe land degradation in sub-humid Ethiopia. The objective of this study was to investigate the role and the effect of subsurface water level change on gully headcut retreat, gully formation and expansion in high rainfall tropical regions in the Ethiopian highlands. During the rainy seasons of 2017–2019, the expansion rate of 16 fixed gullies was measured and subsurface water levels were measured by piezometers installed near gully heads. During the study period, headcut retreats ranged from 0.70 to 2.35 m, with a mean value of 1.49 ± 0.56 m year−1, and average depth of the surface water level varied between 1.12 and 2.82 m, with a mean value of 2.62 m. Gully cross-section areas ranged from 2.90 to 20.90 m2, with an average of 9.31 ± 4.80 m2. Volumetric retreat of gully headcuts ranged from 4.49 to 40.55 m3 and averaged 13.34 ± 9.10 m3. Soil loss from individual gullies ranged from 5.79 to 52.31 t year−1 and averaged 17.21 ± 11.74 t year−1. The headcut retreat rate and sediment yield were closely related over the three study seasons. Elevated subsurface water levels facilitated the slumping of gully banks and heads, causing high sediment yield. When the soil was saturated, bank collapse and headcut retreat were favoured by the combination of elevated subsurface water and high rainfall. This study indicates that area exclosures are effective in controlling subsurface water level, thus reducing gully headcut retreat and associated soil loss.  相似文献   
37.
Volatile organic iodine compounds (VOIs) emitted from the ocean surface to the air play an important role in atmospheric chemistry. Shipboard observations were conducted in Funka Bay, Hokkaido, Japan, bimonthly or monthly from March 2012 to December 2014, to elucidate the seasonal variations of VOI concentrations in seawater and their sea-to-air iodine fluxes. The bay water exchanges with the open ocean water of the North Pacific twice a year (early spring and autumn). Vertical profiles of CH2I2, CH2ClI, CH3I, and C2H5I concentrations in the bay water were measured bimonthly or monthly within an identified water mass. The VOI concentrations began to increase after early April at the end of the diatom spring bloom, and represented substantial peaks in June or July. The temporal variation of the C2H5I profile, which showed a distinct peak in the bottom layer from April to July, was similar to the PO4 3? variation profile. Correlation between C2H5I and PO4 3? concentrations (r = 0.93) suggests that C2H5I production was associated with degradation of organic matter deposited on the bottom after the spring bloom. CH2I2 and CH2ClI concentrations increased substantially in the surface and subsurface layers (0–60 m) in June or July resulted in a clear seasonal variation of the sea-to-air iodine flux of the VOIs (high in summer or autumn and low in spring).  相似文献   
38.
In order to examine the applicability of remotely-sensed ocean color for the estimation of phytoplankton biomass and primary production in the Oyashio region, the western subarctic Pacific, vertical distributions of chlorophylla concentration and primary production were observed in April and May 1997. Spring bloom was observed in both April and May, and the surface concentration of chlorophylla exceeded 40 mg m−3. The relationship between the standing stocks of chlorophylla within the layer from the sea surface to one optical depth (0–1/k layer) and the surface chlorophylla concentration is expressed as a Michaelis-Menten equation. The mean ratio of the standing stock of chlorophylla in the euphotic layer to that in the 0–1/k layer was 4.41, this ratio did not significantly differ from 4.61 which was obtained at homogeneous distribution of chlorophylla within the euphotic layer. These facts suggest that the distribution of chlorophylla could be assumed to be homogeneous in the euphotic layer during the spring bloom. Results of primary production measurements by simulatedin situ method were compared with those by an algorithm with two variables; chlorphylla and non-spectral PAR. Daily primary production in the euphotic layer estimated by the algorithm varied in a range of 38–274% of that estimated by incubation, although the primary productions by the algorithm agreed with those by the incubation at a half of stations. Primary production within the euphotic layer calculated using simply the surface data was the same as that estimated using vertical distribution of chlorophylla. These results show that the primary production in the euphotic layer may be estimated from the remote sensed measurements during the spring bloom in the Oyashio region.  相似文献   
39.
40.
The Izumi Group in southwestern Japan is considered to represent deposits in a forearc basin along an active volcanic arc during the late Late Cretaceous. The group consists mainly of felsic volcanic and plutonic detritus, and overlies a Lower to Upper Cretaceous plutono‐metamorphic complex (the Ryoke complex). In order to reconstruct the depositional environments and constrain the age of deposition, sedimentary facies and U–Pb dating of zircon grains in tuff were studied for a drilled core obtained from the basal part of the Izumi Group. On the basis of the lithofacies associations, the core was subdivided into six units from base to top, as follows: mudstone‐dominated unit nonconformably deposited on the Ryoke granodiorite; tuffaceous mudstone‐dominated unit; tuff unit; tuffaceous sandstone–mudstone unit; sandstone–mudstone unit; and sandstone‐dominated unit. This succession suggests that the depositional system changed from non‐volcanic muddy slope or basin floor, to volcaniclastic sandy submarine fan. Based on a review of published radiometric age data of the surrounding region of the Ryoke complex and the Sanyo Belt which was an active volcanic front during deposition of the Izumi Group, the U–Pb age (82.7 ±0.5 Ma) of zircon grains in the tuff unit corresponds to those of felsic volcanic and pyroclastic rocks in the Sanyo Belt.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号