首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   521篇
  免费   18篇
  国内免费   6篇
测绘学   52篇
大气科学   39篇
地球物理   103篇
地质学   166篇
海洋学   27篇
天文学   118篇
综合类   15篇
自然地理   25篇
  2023年   3篇
  2022年   4篇
  2021年   7篇
  2020年   12篇
  2019年   15篇
  2018年   37篇
  2017年   19篇
  2016年   30篇
  2015年   22篇
  2014年   23篇
  2013年   50篇
  2012年   22篇
  2011年   14篇
  2010年   17篇
  2009年   24篇
  2008年   20篇
  2007年   16篇
  2006年   12篇
  2005年   14篇
  2004年   8篇
  2003年   13篇
  2002年   7篇
  2001年   6篇
  2000年   7篇
  1999年   11篇
  1998年   9篇
  1997年   4篇
  1996年   6篇
  1995年   8篇
  1993年   8篇
  1992年   5篇
  1991年   9篇
  1990年   5篇
  1989年   10篇
  1988年   6篇
  1987年   7篇
  1986年   3篇
  1985年   4篇
  1984年   5篇
  1983年   5篇
  1982年   7篇
  1981年   5篇
  1980年   3篇
  1979年   5篇
  1978年   4篇
  1976年   2篇
  1975年   2篇
  1974年   2篇
  1973年   3篇
  1971年   3篇
排序方式: 共有545条查询结果,搜索用时 281 毫秒
91.
The impact of vertical resolution on the evolution and movement of tropical cyclones was studied using NCAR MM5 model with a horizontal resolution of 9 km. Four numerical experiments were performed with different vertical resolutions, that is, with 23 vertical levels as control experiment, and 36 vertical levels with high resolution in the lower troposphere, 33 vertical levels with high resolution in the upper troposphere and 46 vertical levels with increased vertical resolution throughout the troposphere as relative to base experiment. The results indicate that increased vertical resolution in the lower troposphere produces efficient intensification and better structure in terms of eye and eyewall. Increased vertical resolution at lower levels improves the prediction of vertical shear of horizontal wind. Experiments with high resolution in the lower troposphere and high resolution throughout the troposphere simulate better track up to 72 hours.  相似文献   
92.
Watershed simulation models are used extensively to investigate hydrologic processes, landuse and climate change impacts, pollutant load assessments and best management practices (BMPs). Developing, calibrating and validating these models require a number of critical decisions that will influence the ability of the model to represent real world conditions. Understanding how these decisions influence model performance is crucial, especially when making science‐based policy decisions. This study used the Soil and Water Assessment Tool (SWAT) model in West Lake Erie Basin (WLEB) to examine the influence of several of these decisions on hydrological processes and streamflow simulations. Specifically, this study addressed the following objectives (1) demonstrate the importance of considering intra‐watershed processes during model development, (2) compare and evaluated spatial calibration versus calibration at outlet and (3) evaluate parameter transfers across temporal and spatial scales. A coarser resolution (HUC‐12) model and a finer resolution model (NHDPlus model) were used to support the objectives. Results showed that knowledge of watershed characteristics and intra‐watershed processes are critical to produced accurate and realistic hydrologic simulations. The spatial calibration strategy produced better results compared to outlet calibration strategy and provided more confidence. Transferring parameter values across spatial scales (i.e. from coarser resolution model to finer resolution model) needs additional fine tuning to produce realistic results. Transferring parameters across temporal scales (i.e. from monthly to yearly and daily time‐steps) performed well with a similar spatial resolution model. Furthermore, this study shows that relying solely on quantitative statistics without considering additional information can produce good but unrealistic simulations. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
93.
Integrated biostratigraphic studies are undertaken on the newly discovered Gondwana successions of Purnea Basin which have been recognized in the subsurface below the Neogene Siwalik sediments. The four exploratory wells, so far drilled in Purnea Basin, indicated the presence of thick Gondwana sussession (± 2450m) with varied lithological features. However, precise age of different Gondwanic lithounits of this basin and their correlation with standard Gondwana lithounits is poorly understood due to inadequate biostratigraphic data.Present biostratigraphic studies on the Gondwana successions in the exploratory wells of PRN-A, RSG-A, LHL-A and KRD-A enable recognition of fifteen Gondwanic palynological zones ranging in age from Early Permian (Asselian-Sakmarian) to Late Triassic (Carnian-Norian). Precise age for the Gondwanic palynological zones, recognized in the Purnea Basin and already established in other Indian Gondwana basins, are provided in the milieu of additional palynological data obtained from the Gondwana successions of this basin.The Lower Gondwana (Permian) palynofloras of Purnea Basin recorded from the Karandighi, Salmari, Katihar and Dinajpur formations resemble the palynological assemblages earlier recorded from the Talchir, Karharbari, Barakar and Raniganj formations respectively, and suggests the full development of lower Gondwana succession in this basin. The Upper Gondwana (Triassic) succession of this basin is marked by the Early and Middle to Late Triassic palynofloras that resemble Panchet and Supra-Panchet (Dubrajpur/Maleri Formation) palynological assemblages, and indicates the occurrence of complete Upper Gondwana succession also in the Purnea Basin.The lithological and biostratigraphic attributes of Gondwana sediments from Purnea, Rajmahal and western parts of Bengal Basin (Galsi Basin) are almost similar and provides strong evidences about the existence of a distinct N-S trending Gondwana Graben, referred as the Purnea-Rajmahal-Galsi Gondwana Graben. Newly acquired biostratigraphic data from the Gondwana sediments of CHK-A, MNG-A and PLS-A wells from central part of Bengal Basin and Bouguer anomaly data suggest that these wells fall in a separate NE-SW trending graben of “Chandkuri-Palasi-Bogra Gondwana Graben”. Although, the post-Gondwana latest Jurassic-Early Cretaceous Rajmahal Traps and and intertrappean beds succeed the Upper Gondwana successions in Rajmahal, Galsi and Chandkuri-Palasi Gondwana basins, but not recorded in the drilled wells of Purnea Basin, instead succeeded by the Neogene Siwalik sediments.  相似文献   
94.
Finite Element (FE) modeling under plane stress condition is used to analyze the fault type variation with depth along and around the San Andreas Fault (SAF) zone. In this simulation elastic rheology was used and was thought justifiable as the variation in depth from 0.5 km to 20 km was considered. Series of calculations were performed with the variation in domain properties. Three types of models were created based on simple geological map of California, namely, 1) single domain model considering whole California as one homogeneous domain, 2) three domains model including the North American plate, Pacific plate, and SAF zone as separate domains, and 3) Four domains model including the three above plus the Garlock Fault zone. Mohr-Coulomb failure criterion and Byerlee's law were used for the calculation of failure state. All the models were driven by displacement boundary condition imposing the fixed North American plate and Pacific plate motion along N34°W vector up to the northern terminus of SAF and N50°E vector motion for the subducting the Gorda and Juan de Fuca plates. Our simulated results revealed that as the depth increased, the fault types were generally normal, and at shallow depth greater strike slip and some thrust faults were formed. It is concluded that SAF may be terminated as normal fault at depth although the surface expression is clearly strike slip.  相似文献   
95.
Recent field prospecting in the Cretaceous sequences of the lower Narmada valley has led to the discovery of three isolated archosaur teeth from the upper part of marine Cretaceous rocks of the Bagh Group. The specimens were recovered by surface prospecting from an oyster‐bearing green sandstone bed occurring at the top of the Coralline Limestone (Coniacian) from a site near Phutibawri village, Dhar District, Madhya Pradesh, India. Of the three teeth recovered from this horizon, two are identified with abelisaurid dinosaurs and the third one with an indeterminate crocodile. The abelisaurid teeth conform to the premaxillary and maxillary tooth morphology of Majungasaurus and Indosuchus. Earlier reports of abelisaurid dinosaurs from India are from the Upper Cretaceous (Maastrichtian) Lameta Group of Jabalpur, Pisdura (Central India) and Balasinor (Western India) and Upper Cretaceous (Late Maastrichtian) Kallamedu Formation (South India). As no associated age diagnostic fossils are found, the specimens described here are considered to represent pre‐Late to Late Maastrichtian age based on the known ages of the underlying and overlying formations. The new finds, therefore, document stratigraphically the oldest occurrence of abelisaurid dinosaurs known from the Indian subcontinent.  相似文献   
96.
An attempt is made to evaluate the impact of Doppler Weather Radar (DWR) radial velocity and reflectivity in Weather Research and Forecasting (WRF)-3D variational data assimilation (3DVAR) system for prediction of Bay of Bengal (BoB) monsoon depressions (MDs). Few numerical experiments are carried out to examine the individual impact of the DWR radial velocity and the reflectivity as well as collectively along with Global Telecommunication System (GTS) observations over the Indian monsoon region. The averaged 12 and 24 h forecast errors for wind, temperature and moisture at different pressure levels are analyzed. This evidently explains that the assimilation of radial velocity and reflectivity collectively enhanced the performance of the WRF-3DVAR system over the Indian region. After identifying the optimal combination of DWR data, this study has also investigated the impact of assimilation of Indian DWR radial velocity and reflectivity data on simulation of the four different summer MDs that occurred over BoB. For this study, three numerical experiments (control no assimilation, with GTS and GTS along with DWR) are carried out to evaluate the impact of DWR data on simulation of MDs. The results of the study indicate that the assimilation of DWR data has a positive impact on the prediction of the location, propagation and development of rain bands associated with the MDs. The simulated meteorological parameters and tracks of the MDs are reasonably improved after assimilation of DWR observations as compared to the other experiments. The root mean square errors (RMSE) of wind fields at different pressure levels, equitable skill score and frequency bias are significantly improved in the assimilation experiments mainly in DWR assimilation experiment for all MD cases. The mean Vector Displacement Errors (VDEs) are significantly decreased due to the assimilation of DWR observations as compared to the CNTL and 3DV_GTS experiments. The study clearly suggests that the performance of the model simulation for the intense convective system which influences the large scale monsoonal flow is significantly improved after assimilation of the Indian DWR data from even one coastal locale within the MDs track.  相似文献   
97.
98.
Use of fly ash locked in the ash ponds in geotechnical applications such as stowing or backfilling of the mines is an attractive alternative to solve the disposal problem. Before it is used as a stowing or backfilling material, the response of the fly ash?to imposed load must be determined in order to assess its load taking ability. The present study examines the effect of time and incremental load on the consolidation characteristics of the sedimented stowed pond ash using a fixed ring consolidometer. The important parameters, viz. rate of settlement, consolidation coefficients and void ratio, etc. of the hydraulically stowed pond ash collected after 7, 14, 21, 28 and 35?days of stowing under step incremental loads are determined. The study revealed that 60.42–84.87% settlement of the sedimented stowed pond ash takes place in the initial 1?min of the loading. In addition, it is observed that the coefficient of consolidation of the sedimented stowed pond ash, which varies in the range of 0.0195–0.1882?cm2/min, is comparatively low and decreases with the increment of applied load and time. This indicates that the structures lying above the stowed pond ash mass will undergo gradual settling and not suffer large deformation.  相似文献   
99.
Heavy mineral analysis was carried out for the beach and fore dune sediments along 60 transects of Nizampatnam-Lankavanidibba coastal area. The heavy mineral assemblage in this area with decreasing abundance of opaques (Ilmenite + magnetite, 47.67%), pyriboles (20.35%), garnets (3.66%), epidote (3.23%) and with less than 3.0% concentration of sillimanite, zircon, staurolite, kyanite, apatite, spinel, monazite, biotite, topaz, leucoxene and chlorite. The heavy mineral concentrations are high in the finer fractions i.e., +120 and +230 (ASTM) than the coarse fraction (+60) of sand. In the seven sectors, heavy mineral assemblage is same but their concentrations are different. The sectors nearer to the river mouth contain high concentration of high specific gravity heavy minerals (ilmenite and magnetite) than sectors away from the river mouth. The redistribution of heavy minerals is controlled by creek dynamics, longshore currents, size and specific gravity of the heavy minerals.  相似文献   
100.
A detailed, integrated gravity and magnetic study across the Main Central Thrust (MCT) along the Pala-Maneri traverse in Uttaranchal, NW Himalaya was carried out. The gravity data was acquired using a CG-3 gravity meter with an accuracy of 0.005 mGal, while magnetic data was acquired using a proton precession magnetometer with a station interval of 20 m. Data was collected along a 11.7 km, NE-SW traverse from Pala to Maneri along the proposed route of a hydroelectric headrace tunnel. The measured variation in the gravity field was approximately 70 mGal, with two prominent highs recorded at distances of 0.5 km, 7.5 km and lows at 3.0 km, 10.5 km from Maneri. The gravity highs can be attributed to presence of high-density rocks along the thrust planes. The sharp gravity low recorded at 10.5 km distance possibly indicates a sympathetic fault of the MCT that is highly saturated with fluids (water). The broad gravity low between 2.5 km and 4.0 km distance is likely to represent the gravity signature of the MCT itself. The measured variation in the magnetic field was approximately 285 nT. The associated gravity and magnetic signatures located several faults along the traverse including presence of the MCT at Kumaltigad.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号