首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   225篇
  免费   0篇
  国内免费   4篇
测绘学   3篇
大气科学   51篇
地球物理   52篇
地质学   23篇
海洋学   79篇
天文学   7篇
综合类   1篇
自然地理   13篇
  2023年   1篇
  2021年   1篇
  2020年   4篇
  2019年   7篇
  2017年   1篇
  2016年   2篇
  2015年   12篇
  2014年   26篇
  2013年   18篇
  2012年   14篇
  2011年   10篇
  2010年   13篇
  2009年   17篇
  2008年   9篇
  2007年   11篇
  2006年   18篇
  2005年   17篇
  2004年   25篇
  2003年   11篇
  2002年   4篇
  2001年   2篇
  2000年   3篇
  1999年   3篇
排序方式: 共有229条查询结果,搜索用时 227 毫秒
1.
Evidence is presented of a lateral variation in differential stress during metamorphism along a regional metamorphic belt on the basis of the proportion of microboudinaged piemontite grains (p) in a quartz matrix in metacherts. It is proposed that p is a practical indicator of relative differential stress. Analysis of 123 metacherts from the 800 km long Sambagawa metamorphic belt, Japan, reveals that p‐values range from < 0.01 to 0.7 in this region. Most samples from Wakayama in the mid‐belt area have p‐values of 0.4–0.6, whereas those from western Shikoku have p‐values of < 0.1. This difference cannot be explained by variations in metamorphic temperature, and is instead attributed to a regional, lateral variation in differential stress during metamorphism.  相似文献   
2.
To evaluate the contribution of biogeochemical processes to the oceanic carbon cycle and to calculate the ratio of calcium carbonate to organic carbon downward export, we have incorporated biological and alkalinity pumps in the yoked high-latitude exchange/interior diffusion-advection (YOLDA) model. The biogeochemical processes are represented by four parameters. The values of the parameters are tuned so that the model can reproduce the observed phosphate and alkalinity distributions in each oceanic region. The sensitivity of the model to the biogeochemical parameters shows that biological production rates in the euphotic zone and decomposition depths of particulate matters significantly influence horizontal and vertical distributions of biogeochemical substances. The modeled vertical fluxes of particulate organic phosphorus and calcium carbonate are converted to vertical carbon fluxes by the biological pump and the alkalinity pump, respectively. The downward carbon flux from the surface layer to the deep layer in the entire region is estimated to be 3.36 PgC/yr, which consists of 2.93 PgC/yr from the biological pump and 0.43 PgC/yr from the alkalinity pump, which is consistent with previous studies. The modeled rain ratio is higher with depth and higher in the Pacific and Indian Oceans than in the Atlantic Ocean. The global rain ratio at the surface layer is calculated to be 0.14 to 0.15. This value lies between the lower and higher ends of the previous estimates, which range widely from 0.05 to 0.25. This study indicates that the rain ratio is unlikely to be higher than 0.15, at least in the surface waters.  相似文献   
3.
Two processes are generally explained as causes of temporal changes in the stoichiometric silicon/nitrogen (Si/N) ratios of sinking particles and of nutrient consumption in the surface water during the spring diatom bloom: (1) physiological changes of diatom under the stress of photosynthesis of diatom and (2) differences of regeneration between silicon and nitrogen. We investigated which process plays an important role in these changes using a one-dimensional ecosystem model that explicitly represents diatom and the other non-silicious phytoplankton. The model was applied to station A7 (41°30′ N, 145°30′ E) in the western North Pacific, where diatom regularly blooms in spring. Model simulations show that the Si/N ratios of the flux exported by the sinking particles at 100 m depth and of nutrient consumptions in the upper 100 m surface water have their maxima at the end of the spring diatom bloom, the values and timings of which are significantly different from each other. Analyses of the model results show that the differences of regeneration between silicon and nitrogen mainly cause the temporal changes of the Si/N ratios. On the other hand, the physiological changes of diatoms under stress can hardly cause these temporal changes, because the effect of the change in the diatom's uptake ratio of silicon to nitrogen is cancelled by that in its sinking rate.  相似文献   
4.
A model based on that of Kishi et al. (2001) has been extended to 15 compartments including silicon and carbon cycles. This model was applied to Station A7 off Hokkaido, Japan, in the Northwestern Pacific. The model successfully simulated the observations of: 1. a spring bloom of diatoms; 2. large seasonal variations of nitrate and silicate concentrations in the surface water; and 3. large inter-annual variations in chlorophyll-a. It also reproduced the observed features of the seasonal variations of carbon dioxide partial pressure (pCO2)—a peak in pCO2 in winter resulting from deep winter convection, a rapid decrease in pCO2 as a result of the spring bloom, and an almost constant pCO2 from summer through fall (when the effect of increasing temperature cancels the effect of biological production). A comparison of cases with and without silicate limitation shows that including silicate limitation in the model results in: 1. decreased production by diatoms during summer; and 2. a transition in the dominant phytoplankton species, from diatoms to other species that do not take up silicate. Both of these phenomena are observed at Station A7, and our results support the hypothesis that they are caused by silicate limitation of diatom growth. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
5.
JGOFS has revealed the importance of marine biological activity to the global carbon cycle. Ecological models are valuable tools for improving our understanding of biogeochemical cycles. Through a series of workshops, the North Pacific Marine Science Organization (PICES) developed NEMURO (North Pacific Ecosystem Model Understanding Regional Oceanography) a model, specifically designed to simulate the lower trophic ecosystem in the North Pacific Ocean. Its ability to simulate vertical fluxes generated by biological activities has not yet been validated. Here compare NEMURO with several other lower trophic level models of the northern North Pacific. The different ecosystem models are each embedded in a common three-dimensional physical model, and the simulated vertical flux of POM and the biomass of phytoplankton are compared. The models compared are: (1) NEMURO, (2) the Kishi and Nakata Model (Kishi et al., 1981), (3) KKYS (Kawamiya et al., 1995, 2000a, 2000b), and (4) the Denman model (Denman and Peña, 2002). With simple NPZD models, it is difficult to describe the production of POM (Particulate Organic Matter) and hence the simulations of vertical flux are poor. However, if the parameters are properly defined, the primary production can be well reproduced, even though none of models we used here includes iron limitation effects. On the whole, NEMURO gave a satisfactory simulation of the vertical flux of POM in the northern North Pacific.  相似文献   
6.
A four-dimensional variational data assimilation system has been applied to an experiment to describe the dynamic state of the North Pacific Ocean. A synthesis of available observational records and a sophisticated ocean general circulation model produces a dynamically consistent dataset, which, in contrast to the nudging approach, provides realistic features of the seasonally-varying ocean circulation with no artificial sources/sinks for temperature and salinity fields. This new dataset enables us to estimate heat and water mass transports in addition to the qualification of water mass formation and movement processes. A sensitivity experiment on our assimilation system reveals that the origin of the North Pacific Intermediate Water can be traced back to the Sea of Okhotsk and the Bering Sea in the subarctic region and to the subtropical Kuroshio region further south. These results demonstrate that our data assimilation system is a very powerful tool for the identification and characterization of ocean variabilities and for our understanding of the dynamic state of ocean circulation. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
7.
In order to understand the actual formation process of the North Pacific Intermediate Water (NPIW), structure of subsurface intrusions of the Oyashio water and the mixing of the Oyashio and the Kuroshio waters in and around the Kuroshio Extension (KE) were examined on the basis of a synoptic CTD observation carried out in May-June 1992. The fresh Oyashio water in the south of Hokkaido was transported into KE region through the Mixed Water Region (MWR) in the form of subsurface intrusions along two main paths. The one was along the east coast of northern Japan through the First Branch of the Oyashio (FBO) and the other along the eastern face of a warm streamer which connected KE with a warm core ring through the Second Branch of the Oyashio (SBO). The fresh Oyashio water extended southward through FBO strongly mixed with the saline NPIW transported by the Kuroshio in the south of Japan (old NPIW) in and around the warm streamer. On the other hand, the one through SBO well preserved its original properties and extended eastward beyond 150°E along KE with a form of rather narrow band. The intrusion ejected Oyashio water lens with a diameter of 50–60 km southward across KE axis and split northward into the MWR involved in the interaction of KE and a warm core ring, which were supposed to be primary processes of new NPIW formation.  相似文献   
8.
《Marine Geology》2005,214(4):389-409
The innermost shelf of the eastern Korea Strait is a ria-type coastal sea comprising islands, intervening passageways and embayments. A detailed analysis of high-resolution (1−10 kHz) subbottom profiles and core sediments from this area reveals complicated depositional and distributional patterns of the Holocene mud deposits related to complex topography with varying supply of the adjacent Nakdong riverine sediments. Sediments from the Nakdong River were bifurcated around Gadeok Island, forming two proximal systems: Nakdong and western Gadeok systems. These proximal systems prograded offshore (southward) by active sediment supply from the Nakdong River in the early stage. Suspended sediments passing through the Nakdong system formed the distal (Gadeok Waterway and eastern Geoje) systems in the area between the northern Geoje and Gadeok islands. These distal systems show a northwestward (onshore) prograding tendency to Jinhae Bay, the biggest bay in the vicinity of the Nakdong estuary in which the Jinhae Bay system developed. In the late stage, a remarkable decrease of sediment supply from the Nakdong River has caused retrograding geometry of the two proximal systems. However, the most distal (Jinhae Bay) system has continuously prograded bayward due to the persistent supply of sediments resuspended by strong tidal currents from nearby distal (Gadeok Waterway and eastern Geoje) systems. These complex depositional features indicate that topography has an important influence on depositional developments of the Holocene mud deposits by controlling path and intensity of sediment dispersal and resuspension processes.  相似文献   
9.
Besides granites of the ilmenite series, in which the anisotropy of magnetic susceptibility (AMS) is mainly controlled by paramagnetic minerals, the AMS of igneous rocks is commonly interpreted as the result of the shape-preferred orientation of unequant ferromagnetic grains. In a few instances, the anisotropy due to the distribution of ferromagnetic grains, irrespective of their shape, has also been proposed as an important AMS source. Former analytical models that consider infinite geometry of identical and uniformly magnetized and coaxial particles confirm that shape fabric may be overcome by dipolar contributions if neighboring grains are close enough to each other to magnetically interact. On these bases we present and experimentally validate a two-grain macroscopic numerical model in which each grain carries its own magnetic anisotropy, volume, orientation and location in space. Compared with analytical predictions and available experiments, our results allow to list and quantify the factors that affect the effects of magnetic interactions. In particular, we discuss the effects of (i) the infinite geometry used in the analytical models, (ii) the intrinsic shape anisotropy of the grains, (iii) the relative orientation in space of the grains, and (iv) the spatial distribution of grains with a particular focus on the inter-grain distance distribution. Using documented case studies, these findings are summarized and discussed in the framework of the generalized total AMS tensor recently introduced by Cañon-Tapia (Cañon-Tapia, E., 2001. Factors affecting the relative importance of shape and distribution anisotropy in rocks: theory and experiments. Tectonophysics, 340, 117–131.). The most important result of our work is that analytical models far overestimate the role of magnetic interaction in rock fabric quantification. Considering natural rocks as an assemblage of interacting and non-interacting grains, and that the effects of interaction are reduced by (i) the finite geometry of the interacting clusters, (ii) the relative orientation between interacting grains, (iii) their heterogeneity in orientation, shape and bulk susceptibility, and (iv) their inter-distance distribution, we reconcile analytical models and experiments with real case studies that minimize the role of magnetic interaction onto the measured AMS. Limitations of our results are discussed and guidelines are provided for the use of AMS in geological interpretation of igneous rock fabrics where magnetic interactions are likely to occur.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号