首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   41篇
  免费   1篇
大气科学   15篇
地质学   20篇
海洋学   6篇
自然地理   1篇
  2015年   1篇
  2013年   2篇
  2012年   3篇
  2011年   1篇
  2010年   2篇
  2009年   1篇
  2008年   1篇
  2007年   2篇
  2005年   3篇
  2004年   2篇
  2003年   4篇
  2002年   5篇
  2000年   1篇
  1999年   1篇
  1998年   1篇
  1997年   1篇
  1996年   1篇
  1995年   1篇
  1994年   1篇
  1993年   2篇
  1990年   3篇
  1982年   2篇
  1962年   1篇
排序方式: 共有42条查询结果,搜索用时 406 毫秒
1.
2.
3.
4.
Both the mineralogy and facies of lacustrine bio‐induced carbonates are controlled largely by hydrological factors that are highly dependent upon climatic influence. As such they are useful tools in characterizing ancient lake environments. In this way, the study of the sedimentary record from the small ancient Sarliève Lake (Limagne, Massif Central, France) aims to reconstruct the hydrological evolution during the Holocene, using petrographical, mineralogical and geochemical analyses. The fine‐grained marls, mainly calcitic, display numerous layers rich in pristine Ca‐dolomite, with small amounts of aragonite, which are clearly autochthonous. As these minerals are rather unusual in the temperate climatic context of western Europe, the question arises about their forming conditions, and therefore that of the lacustrine environment. Ca‐dolomite prevails at the base of the sequence as a massive dolomicrite layer and, in the middle part, it builds up most of the numerous laminae closely associated with organic matter. Scanning electron microscope observations reveal the abundance of tiny crystals (tens to hundreds of nanometres) mainly organized as microspheres looking like cocci or bacilli. Such a facies is interpreted as resulting from the fossilization of benthic microbial communities by dolomite precipitation following organic matter consumption and extracellular polymeric substance degradation. These microbial dolomites were precipitated in a saline environment, as a consequence of excess evaporation from the system, as is also suggested by their positive ?18O values. The facies sequence expresses the following evolution: (i) saline pan, i.e. endorheic stage with a perennial lowstand in lake level (Boreal to early Atlantic periods); (ii) large fluctuations in lake level with sporadic freshening of the system (Atlantic); (iii) open lake stage (sub‐boreal); and (iv) anthropogenic drainage (sub‐Atlantic).  相似文献   
5.
6.
7.
8.
9.
10.
Pliocene and Pleistocene deposits from Grande‐Terre (Guadeloupe archipelago, French Lesser Antilles) provide a remarkable example of an isolated carbonate system built in an active margin setting, with sedimentation controlled by both rapid sea‐level changes and tectonic movements. Based on new field, sedimentological and palaeontological analyses, these deposits have been organized into four sedimentary sequences (S1 to S4) separated by three subaerial erosion surfaces (SB0, SB1 and SB2). Sequences S1 and S2 (‘Calcaires inférieurs à rhodolithes’) deposited during the Late Zanclean to Early Gelasian (planktonic foraminiferal Zones PL2 to PL5) in low subsidence conditions, on a distally steepened ramp dipping eastward. Red algal‐rich deposits, which dominate the western part of Grande‐Terre, change to planktonic foraminifer‐rich deposits eastward. Vertical movements of tens of metres were responsible for the formation of SB0 and SB1. Sequence S3 (‘Formation volcano‐sédimentaire’, ‘Calcaires supérieurs à rhodolithes’ and ‘Calcaires à Agaricia’) was deposited during the Late Piacenzian to Early Calabrian (Zones PL5 to PT1a) on a distally steepened, red algal‐dominated ramp that changes upward into a homoclinal, coral‐dominated ramp. Deposition of Sequence S3 occurred during a eustatic cycle in quiet tectonic conditions. Its uppermost boundary, the major erosion surface SB2, is related to the Cala1 eustatic sea‐level fall. Finally, Sequence S4 (‘Calcaires à Acropora’) probably formed during the Calabrian, developing as a coral‐dominated platform during a eustatic cycle in quiet tectonic conditions. The final emergence of the island could then have occurred in Late Calabrian times.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号