首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1765篇
  免费   258篇
  国内免费   206篇
测绘学   13篇
大气科学   357篇
地球物理   645篇
地质学   210篇
海洋学   822篇
天文学   46篇
综合类   27篇
自然地理   109篇
  2024年   4篇
  2023年   7篇
  2022年   27篇
  2021年   32篇
  2020年   35篇
  2019年   88篇
  2018年   38篇
  2017年   81篇
  2016年   71篇
  2015年   81篇
  2014年   68篇
  2013年   77篇
  2012年   51篇
  2011年   124篇
  2010年   74篇
  2009年   126篇
  2008年   194篇
  2007年   159篇
  2006年   87篇
  2005年   70篇
  2004年   62篇
  2003年   81篇
  2002年   83篇
  2001年   66篇
  2000年   70篇
  1999年   59篇
  1998年   49篇
  1997年   43篇
  1996年   34篇
  1995年   27篇
  1994年   35篇
  1993年   31篇
  1992年   26篇
  1991年   19篇
  1990年   11篇
  1989年   11篇
  1988年   6篇
  1987年   2篇
  1986年   4篇
  1985年   2篇
  1984年   1篇
  1983年   2篇
  1982年   6篇
  1980年   3篇
  1977年   1篇
  1954年   1篇
排序方式: 共有2229条查询结果,搜索用时 15 毫秒
111.
Catastrophic failures of many tsunami barriers along the affected coasts during the 2011 Tohoku earthquake tsunami has prompted extensive investigation into improving and revising design codes for tsunami defence structures. To date, researchers and coastal engineers are investigating to understand the failure mechanisms and to find solutions so that the structures merely remain intact in the extreme event such as tsunami. Thus, the present work is motivated to experimentally study tsunami-induced bore pressures exerted on vertical seawalls; a solid vertical wall and a porous vertical seawall that consisted of a perforated front wall and a solid rear wall. Bores with various heights and velocities were generated by using the dam-break method. A porous seawall with 20% porosity of perforated front wall was used in this study. Bore pressures exerted on the solid rear wall and chamber oscillations that occurred in the experiments were also discussed. The experimental results showed that multiple peak pressures were observed during bore run-up phase in the time series of bore impacts. A predictive equation to estimate the maximum bore pressure on a perforated seawall was developed using multiple regression analysis. The proposed equation was also compared with previous empirical formulas.  相似文献   
112.
The hydrostatic energy of high-pressure seawater is a renewable and green energy source for ocean exploration and have been used to replace underwater electrical energy transmission through the cable and underwater battery pack to power seafloor equipment. The advantage of the energy supply method is the cost-effective and the robustness. In the paper, the energy performance of the existing hydrostatic seafloor sediment samplers powered by seawater hydrostatic energy are modelled and analyzed and compared. In view of the common shortcoming of existing technology, a novel hydrostatic seafloor sediment sampler is proposed. The model of energy conversion of the new sampler is built, and its energy performance is obtained. The analysis results indicate that the energy conversion efficiency of the novel sediment sampler is much higher than the existing ones, which means that the new sampler can collect much longer sample with the limited amount of hydrostatic energy. The seawater hydrostatic energy conversion system of the new sampler can also be used to power other seafloor equipment.  相似文献   
113.
Statistical analysis of nonlinear random waves is important in coastal and ocean engineering. One approach for modeling nonlinear waves is second-order random wave theory, which involves sum- and difference-frequency interactions between wave components. The probability distribution of the non-Gaussian surface elevation can be solved using a technique developed by Kac and Siegert [21]. The wave field can be significantly modified by wave diffraction due to a structure, and the nonlinear diffracted wave elevation can be of interest in certain applications, such as the airgap prediction for an offshore structure. This paper investigates the wave statistics due to second-order diffraction, motivated by the scarcity of prior research. The crossing rate approach is used to evaluate the extreme wave elevation over a specified duration. The application is a bottom-supported cylindrical structure, for which semi-analytical solutions for the second-order transfer functions are available. A new efficient statistical method is developed to allow the distribution of the diffracted wave elevation to be obtained exactly, accounting for the statistical dependency between the linear, sum-frequency and difference-frequency components. Moreover, refinements are proposed to improve the efficiency for computing the free surface integral. The case study yields insights into the problem. In particular, the second-order nonlinearity is found to significantly amplify the extreme wave elevation, especially in the upstream region; conversely, the extreme elevation at an oblique location downstream is attenuated due to sheltering effects. The statistical dependency between the linear and sum-frequency components is also shown to be important for the extreme wave statistics.  相似文献   
114.
Reliable estimation of wave run-up is required for the effective and efficient design of coastal structures when flooding or wave overtopping volumes are an important consideration in the design process. In this study, a unified formula for the wave run-up on bermed structures has been developed using collected and existing data. As data on berm breakwaters was highly limited, physical model tests were conducted and the run-up was measured. Conventional governing parameters and influencing factors were then used to predict the dimensionless run-up level with 2% exceedance probability. The developed formula includes the effect of water depth which is required in understanding the influence of sea level rise and consequent changes of wave height to water depth ratio on the future hydraulic performance of the structures. The accuracy measures such as RMSE and Bias indicated that the developed formula is more accurate than the existing formulas. Additionally, the new formula was validated using field measurements and its superiority was observed when compared to the existing prediction formulas. Finally, the new design formula incorporating the partial safety factor was introduced as a design tool for engineers.  相似文献   
115.
A towing experiment was conducted using a modulated wave train to investigate the vertical bending responses of a hydro-structural container ship model. In the experiment, a spatially periodic modulated wave train, as a model of a freak wave in successive high waves mimicking the so-called three sisters, was generated by the recently established higher-order spectral method wave generation (HOSM-WG) method. HOSM-WG enables us to control the location and timing of the maximum crest height in a wave tank. With precise control of the towing carriage, an experiment was conducted in which the timing of the encounters between the ship model and the modulated wave train was accurately determined. The maximum sagging moment (SM) was found to increase in proportion with the encounter wave height. However, because of differences in the relative depth of the fore and aft troughs, the maximum SM is highly variable for a given wave height. The temporal wave-geometry evolution caused the relative trough-depth to vary significantly within a wave period in the vicinity of the maximum crest height. As a result, depending on the encounter timing, the SM varied considerably for a given wave height. The temporal variation of the wave geometry is a robust feature of a modulated wave train and is common between the spatially periodic and temporally periodic modulated wave trains.  相似文献   
116.
The substructures of offshore wind turbines are subjected to extreme breaking irregular wave forces. The present study is focused on investigating breaking irregular wave forces on a monopile using a computational fluid dynamics (CFD) based numerical model. The breaking irregular wave forces on a monopile mounted on a slope are investigated with a numerical wave tank. The experimental and numerical irregular free surface elevations are compared in the frequency-domain for the different locations in the vicinity of the cylinder. A numerical analysis is performed for different wave steepness cases to understand the influence of wave steepness on the breaking irregular wave loads. The wave height transformation and energy level evolution during the wave shoaling and wave breaking processes is investigated. The higher-frequency components generated during the wave breaking process are observed to play a significant role in initiating the secondary force peaks. The free surface elevation skewness and spectral bandwidth during the wave transformation process are analysed and an investigation is performed to establish a correlation of these parameters with the breaking irregular wave forces. The role of the horizontal wave-induced water particle velocity at the free surface and free surface pressure in determining the breaking wave loads is highlighted. The higher-frequency components in the velocity and pressure spectrum are observed to be significant in influencing the secondary peaks in the breaking wave force spectrum.  相似文献   
117.
The article presents initial ideas towards a network-based approach for sea state estimation used for marine operations and other maritime applications. In principle, all available means, ranging from in situ buoys, fleet of ships to remote sensing by satellite and aircraft, could be considered, emphasising that each means and any combinations among may act simultaneously. This study focuses on just one of the means; the use of ships as sailing wave buoys. The article introduces the wave buoy analogy, i.e. ship-as-a-wave-buoy, and it makes a proposal on how to impose (different) weights to the single ship-specific wave spectrum estimates obtained from multiple ships. Moreover, the work includes a discussion about the importance to associate a measure to reflect the (un)certainty of the wave spectrum estimate. The article presents a numerical case study, where multiple ships act simultaneously as wave spectrum-estimators. The case study relies on numerical motion simulations, as appropriate full-scale data is not yet available. In the analysis, it is shown that the use of simultaneous data from multiple ships leads to more accurate wave spectrum estimations.  相似文献   
118.
Wave Energy Converters (WECs) have excellent potential as a source of renewable energy that is yet to be commercially realised. Recent attention has focused on the installation of Oscillating Water Column (OWC) devices as a part of harbor walls to provide advantages of cost–sharing structures and proximity of power generation facilities to existing infrastructure. In this paper, an incompressible three–dimensional CFD model is constructed to simulate a fixed Multi–Chamber OWC (MC–OWC) device. The CFD model is validated; the simulation results are found to be in good agreement with experimental results obtained from a scale physical model tested in a wave tank. The validated CFD model is then used for a benchmark study of 96 numerical tests. These investigate the effects of the PTO damping caused by the power take–off (PTO) system on device performance. The performance is assessed for a range of regular wave heights and periods. The results demonstrate that a PTO system with an intermediate damping can be used for all chambers in the MC–OWC device for most wave period ranges, except for the long wave periods. These require a higher PTO damping. An increased incident wave height reduces the device capture width ratio, but there is a noticeable improvement for long wave periods.  相似文献   
119.
There is a growing practical interest in the ability to increase the sea states at which marine operations can be safely undertaken by exploiting the quiescent periods that are well known to exist under a wide range of sea conditions. While the actual prediction of quiescent periods at sea for the control of operations is a deterministic process, the long term planning of future maritime tasks that rely on these quiescent periods is a statistical process involving the anticipated quiescence properties of the forecasted sea conditions in the geographical region of interest. It is in principle possible to obtain such data in tabular form either large scale simulation or from field data. However, such simulations are computationally intensive and libraries of appropriate field data are not common. Thus, it is clearly attractive to develop techniques that exploit standard wave spectral models for describing the quiescence statistics directly from such spectra. The present study focuses upon such techniques and is a first step towards the production of a computationally low-cost quiescence prediction tool and compares its efficacy against simulations. Two significant properties emerge for a large class of wave spectral models that encompasses the ubiquitous Neumann and Pierson Moskowitz or Bretschneider forms. Firstly, the auto-correlation function of the wave profile that are required to produce the quiescence property can be obtained analytically in terms of standard special functions. This considerably reduces the computational cost making desktop computer-based planning tools a reality. Secondly, for each class of these parametric spectra, the probability of a given number of consecutive wave heights (normalised to the significant wave heights) less than some critical value is in fact independent of absolute wave height. Thus, for a broad class of practically interesting wave spectra all that is required to obtain the statistical distribution of the quiescent periods is simple rescaling.  相似文献   
120.
This paper investigates an approach to limit the fullness of ‘tuning’ provided by wave-by-wave impedance matching control of wave energy devices in irregular waves. A single analytical formulation based on the Lagrange multiplier approach of Evans [1] is used to limit the velocity amplitude while also limiting the closeness of the phase match between velocity and exciting force. The paper studies the effect of the present technique in concurrently limiting the device velocity and the required control/actuation force. Time domain application requires wave-profile prediction, which here is based on a deterministic propagation model. Also examined in the time domain is the effect of possible violation of the displacement constraint, which for many designs implies impacts at hard stops within the power take-off mechanism. Time domain simulations are carried out for a 2-body axisymmetric converter (with physical end-stops) in sea states reported for a site off the US east coast. It is found that the approach leads to effective power conversion in the less energetic sea states, while as desired, considerable muting of the optimal response is found in the larger sea states. Under the assumptions of this work, the end-stop collisions are found to have a minor effect on the power conversion. The present approach could be used to guide the design of power take-off systems so that their displacement stroke, maximum force, and resistive and reactive power limits are well-matched to the achievable performance of a given controlled primary energy converter.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号