首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3205篇
  免费   363篇
  国内免费   345篇
测绘学   79篇
大气科学   65篇
地球物理   873篇
地质学   936篇
海洋学   178篇
天文学   1558篇
综合类   111篇
自然地理   113篇
  2024年   5篇
  2023年   10篇
  2022年   49篇
  2021年   56篇
  2020年   69篇
  2019年   71篇
  2018年   56篇
  2017年   77篇
  2016年   77篇
  2015年   73篇
  2014年   90篇
  2013年   96篇
  2012年   93篇
  2011年   85篇
  2010年   78篇
  2009年   227篇
  2008年   232篇
  2007年   259篇
  2006年   279篇
  2005年   239篇
  2004年   256篇
  2003年   241篇
  2002年   193篇
  2001年   184篇
  2000年   186篇
  1999年   172篇
  1998年   153篇
  1997年   67篇
  1996年   58篇
  1995年   34篇
  1994年   29篇
  1993年   31篇
  1992年   20篇
  1991年   15篇
  1990年   14篇
  1989年   16篇
  1988年   7篇
  1987年   6篇
  1986年   1篇
  1985年   1篇
  1984年   1篇
  1982年   1篇
  1979年   6篇
排序方式: 共有3913条查询结果,搜索用时 15 毫秒
101.
中国大陆及其邻区强震活动与活动地块关系研究   总被引:16,自引:0,他引:16  
从活动地块假说出发 ,在活动地块研究的基础上 ,探讨了中国大陆及邻区活动地块与强震活动的关系。研究指出 ,主要构造变形和强烈地震大都发生在活动地块边界。在占总面积 17%的活动地块边界上 ,集中了全部的 8级以上巨大地震和 86 %的 7级以上大地震 ,其释放能量占全部总能量的 95 %以上 ,表明中国大陆及其邻区活动地块边界带控制了绝大部分的强地震。从活动地块的整体来看 ,强震活动不仅显示出显著的韵律性特征 ,而且其高、低起伏基本上与中国大陆地区一致 ,只是强震活跃时段有时稍长于中国大陆。各轮回强震活动都有各自活动的主体地区 ,反映了不同活跃期内地块的不同活动方式。文中还从现今地壳运动角度 ,讨论了活动地块运动速率与强地震活动水平之间的可能联系。  相似文献   
102.
柯坪塔格推覆构造几何学、运动学及其构造演化   总被引:29,自引:1,他引:29  
大量野外构造地质调查和深部构造解释表明柯坪塔格推覆构造由多组倒转复式背斜、复式箱状背斜构成的推覆体及其前缘逆冲断裂组成 ,由寒武系—第四系组成的推覆体由北向南逆—斜冲 ,平面上构成向南凸出的弧形推覆构造 ;普昌断裂由各不相连的逆冲斜冲断裂段组成 ,而不是完整的一条走滑断层 ,各推覆体前缘逆冲断裂与各推覆体的普昌断裂段共同构成统一的前缘逆冲斜冲逆冲断裂和推覆构造系统 ;普昌断裂段以西的推覆体具有向东抬升、向西倾覆的鼻状构造特征 ,普昌断裂段以东的推覆体具有向西抬升、向东倾覆的鼻状构造特征 ,普昌基底隆起带是巴楚隆起隐伏在柯坪塔格推覆构造之下的部分。各推覆体前缘断裂在深部均归并于统一的寒武系底部的滑脱面 ,其南浅北深 ,东浅西深 (普昌隆起带以西 )或西浅东深 (普昌隆起带以东 ) (6 10km ) ,埋深较大区发育多组滑脱面。柯坪塔格推覆构造的形成时期为晚第四纪 ,为现今活动的推覆构造系统。文中认为各推覆体向南西的倾覆端基底滑脱面和中新生界内部的滑脱面没有贯通 ,是未来 6级以上地震的发震构造部位。  相似文献   
103.
This paper presents a statistical performance analysis of a semi‐active structural control system for suppressing the vibration response of building structures during strong seismic events. The proposed semi‐active mass damper device consists of a high‐frequency mass damper with large stiffness, and an actively controlled interaction element that connects the mass damper to the structure. Through actively modulating the operating states of the interaction elements according to pre‐specified control logic, vibrational energy in the structure is dissipated in the mass damper device and the vibration of the structure is thus suppressed. The control logic, categorized under active interaction control, is defined directly in physical space by minimizing the inter‐storey drift of the structure to the maximum extent. This semi‐active structural control approach has been shown to be effective in reducing the vibration response of building structures due to specific earthquake ground motions. To further evaluate the control performance, a Monte Carlo simulation of the seismic response of a three‐storey steel‐framed building model equipped with the proposed semi‐active mass damper device is performed based on a large ensemble of artificially generated earthquake ground motions. A procedure for generating code‐compatible artificial earthquake accelerograms is also briefly described. The results obtained clearly demonstrate the effectiveness of the proposed semi‐active mass damper device in controlling vibrations of building structures during large earthquakes. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   
104.
A predictive instantaneous optimal control (PIOC) algorithm is proposed for controlling the seismic responses of elastic structures. This algorithm compensates for the time delay that happens in practical control applications by predicting the structural response over a period that equals the time delay, and by substituting the predicted response in the instantaneous optimal control (IOC) algorithm. The unique feature of this proposed PIOC algorithm is that it is simple and at the same time compensates for the time delay very effectively. Numerical examples of single degree of freedom structures are presented to compare the performance of PIOC and IOC systems for various time delay magnitudes. Results show that a time delay always causes degradation of control efficiency, but PIOC can greatly reduce this degradation compared to IOC. The effects of the structure's natural periods and the choice of control gains on the degradation induced by the time delay are also analyzed. Results show that shorter natural periods and larger control gains are both more sensitive and more serious to the degradation of control efficiency. Finally, a practical application of PIOC is performed on a six‐story moment‐resisting steel frame. It is demonstrated that PIOC contributes significantly to maintain stability in multiple degree of freedom structures, and at the same time PIOC has a satisfactory control performance. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   
105.
A new inelastic structural control algorithm is proposed by incorporating the force analogy method (FAM) with the predictive instantaneous optimal control (PIOC) algorithm. While PIOC is very effective in compensating for the time delay for elastic structures, the FAM is highly efficient in performing the inelastic analysis. Unlike conventional inelastic analysis methods of changing stiffness, the FAM analyzes structures by varying the structural displacement field, and therefore the state transition matrix needs to be computed only once. This greatly simplifies the computation and makes inelastic analysis readily applicable to the PIOC algorithm. The proposed algorithm compensates for the time delay that happens in practical control systems by predicting the inelastic structural response over a period that equals the magnitude of the time delay. A one‐story frame with both strain‐hardening and strain‐softening inelastic characteristics is analyzed using this algorithm. Results show that the proposed control algorithm is feasibile for any inelastic structures. While the control efficiency deteriorates with the increase in magnitude of the time delay, the PIOC maintains acceptable performance within a wide range of time delay magnitudes. Finally, a computer model of a six‐story moment‐resisting steel frame is analyzed to show that PIOC has good control results for real inelastic structures. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   
106.
Movement and strain conditions of active blocks in the Chinese mainland   总被引:2,自引:0,他引:2  
The definition of active block is given from the angles of crustal deformation and strain. The movement and strain parameters of active blocks are estimated according to the unified velocity field composed of the velocities at 1598 GPS stations obtained from GPS measurements carried out in the past years in the Chinese mainland and the surrounding areas. The movement and strain conditions of the blocks are analyzed. The active blocks in the Chinese mainland have a consistent E-trending movement component, but its N and S components are not consistent. The blocks in the western part have a consistent N-trending movement and the blocks in the eastern part have a consistent S-trending movement. In the area to the east of 90°E, that is the area from Himalayas block towards NE, the movement direction of the blocks rotates clockwisely and the movement rates of the blocks are different. Generally, the movement rate is large in the west and south and small in the east and north with a difference of 3 to 4 times between the rates in the west and east. The distributions of principal compressive strain directions of the blocks are also different. The principal strain of the blocks located to the west of 90oE is basically in the SN direction, the principal compressive strain of the blocks in the northeastern part of Qingzang plateau is roughly in the NE direction and the direction of principal compressive strain of the blocks in the southeastern part of Qingzang plateau rounds clockwisely the east end of Himalayas structure. In addition, the principal strain and shear strain rates of the blocks are also different. The Himalayas and Tianshan blocks have the largest principal compressive strain and the maximum shear strain rate. Then, Lhasa, Qiangtang, Southwest Yunnan (SW Yunnan), Qilian and Sichuan-Yunan (Chuan-Dian) blocks followed. The strain rate of the blocks in the eastern part is smaller. The estimation based on the stain condition indicates that Himalayas block is still the area with the most intensive tectonic activity and it shortens in the NS direction at the rate of 15.2±1.5 mm/a. Tianshan block ranks the second and it shortens in the NS direction at the rate of 10.1±0.9 mm/a. At present, the two blocks are still uprising. It can be seen from superficial strain that the Chinese mainland is predominated by superficial expansion. Almost the total area in the eastern part of the Chinese mainland is expanded, while in the western part, the superficial compression and expansion are alternatively distributed from the south to the north. In the Chinese mainland, most EW-trending or proximate EW-trending faults have the left-lateral or left-lateral strike-slip relative movements along both sides, and most NS-trending faults have the right-lateral or right-lateral strike-slip relative movements along both sides. According to the data from GPS measurements the left-lateral strike-slip rate is 4.8±1.3 mm/a in the central part of Altun fault and 9.8±2.2 mm/a on Xianshuihe fault. The movement of the fault along the block boundary has provided the condition for block movement, so the movements of the block and its boundary are consistent, but the movement levels of the blocks are different. The statistic results indicate that the relative movement between most blocks is quite significant, which proves that active blocks exist. Himalayas, Tianshan, Qiangtang and SW Yunnan blocks have the most intensive movement; China-Mongolia, China-Korea (China-Korea), Alxa and South China blocks are rather stable. The mutual action of India, Pacific and Philippine Sea plates versus Eurasia plate is the principal driving force to the block movement in the Chinese mainland. Under the NNE-trending intensive press from India plate, the crustal matter of Qingzang plateau moves to the NNE and NE directions, then is hindered by the blocks located in the northern, northeastern and eastern parts. The crustal matter moves towards the Indian Ocean by the southeastern part of the plateau.  相似文献   
107.
Two events of Tibet uplifting are revealed by detrital apatite fission track (AFT) age data from Linxia Basin. They occurred at about 14 and 5.4-8.0 MaBP respectively. We interpret the first one to be related to the uplifting of the northern Tibet, which might have resulted from convectively removing the thickened lower lithosphere. The second one is a result of Laji Mountain uplifting. Numerous studies of the Tibetan Plateau suggest that the onset time of the deformation in the northeastern margin of Tibetan Plateau and the time of Tibet attaining to its present elevation is about 8 MaBP. They are approximately coincident with the uplift of Lajishan Mountain. It suggests that the northeastern margin of Tibet propagated northeastwardly to its present site in about 8 MaBP for accommodating the sustained convergence between India-Eurasia plate and for keeping its high elevation. The active block pattern dominating the strong earthquake distribution of Chinese continent probably formed at about 8.0-5.4 MaBP.  相似文献   
108.
济宁二号矿孤岛工作面冲击矿压危险及其控制   总被引:2,自引:0,他引:2  
孤岛工作面及其周围巷道附近应力集中程度高,顶板运动剧烈,再加上地质构造的影响,采深较大时,冲击危险程度就高,很容易引发冲击矿压。《煤矿安全规程》要求孤岛工作面按冲击矿压危险工作面来管理。孤岛工作面冲击矿压危险检测预报及控制的技术是先分析冲击危险程度,确定冲击危险指数,提出早期预报;采用电磁辐射和钻屑法进行及时预报;采用卸压爆破进行处理,并采用电磁辐射和钻屑法检验防治措施的效果。实践证明,这套技术安全、可靠、有效,能够保证工作面的安全高效生产。  相似文献   
109.
强震造成的活动地块地壳形变差异探讨   总被引:1,自引:0,他引:1       下载免费PDF全文
20 0 1年 11月 14日发生在昆仑山口西的 8 1级地震 ,在地表产生了长度大于 35 0km的破裂带 ,最大水平位移 6m左右 ,为左旋走滑断层。在昆仑山口西 8 1级地震周围不同活动地块内不同构造部位布设的GPS基准站对地震的响应存在明显的差异。其中位于柴达木活动地块内部的德令哈基准站在地震的当天观测到 7 5mm的同震位移 ,位于川滇活动地块西南边界带的下关基准站在震后 3d发生了 6 8mm以上的明显位移 ,而位于同一地块内部的昆明基准站和位于祁连山活动地块内的西宁基准站、位于拉萨活动地块内的拉萨基准站震时和震后都没有产生明显的位移。GPS基准站的观测资料表明 ,强震所处的活动地块和其相邻活动地块对强震有明显的响应 ,如果相隔一活动地块 ,则受强震的影响较小 ;在活动地块内 ,活动强烈的边界带或其它活动较强的部位对强震引起的地壳形变的响应明显大于活动强度较弱的部位 ;强震对相邻活动地块影响的差异 ,主要与强震所处活动地块运动时对其产生的作用方式的差异有关  相似文献   
110.
鄂豫皖交界地区地震地质背景与中强地震复发特征的研究   总被引:1,自引:2,他引:1  
鄂豫皖交界地区位于东大别山西部,历史中强地震(M≥43/4)主要发生在土地岭-落儿岭及商城-麻城断裂带上,且“互动”和“连动”的特征较为显著。根据这一特征,在研究东大别山区域地质、地壳结构、断裂活动及地震构造应力场特征的基础上,可将鄂豫皖交界地区的中强地震作为秦岭-大别山活动地块中的次级地块的整体活动来看待。该区历史地震活动整体表现为丛集特征,而主要发震断层(土地岭-落儿岭断裂)的历史地震活动则具有相对较好的准周期性。地震复发周期研究提示,该地块近期发生M≥5.0左右地震的危险性较大,而霍山-六安地区为未来发生中强地震的主要危险区。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号