首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1112篇
  免费   229篇
  国内免费   181篇
测绘学   192篇
大气科学   142篇
地球物理   512篇
地质学   357篇
海洋学   101篇
天文学   5篇
综合类   55篇
自然地理   158篇
  2024年   7篇
  2023年   12篇
  2022年   25篇
  2021年   28篇
  2020年   60篇
  2019年   62篇
  2018年   63篇
  2017年   74篇
  2016年   78篇
  2015年   69篇
  2014年   74篇
  2013年   168篇
  2012年   78篇
  2011年   70篇
  2010年   60篇
  2009年   58篇
  2008年   64篇
  2007年   96篇
  2006年   74篇
  2005年   49篇
  2004年   44篇
  2003年   22篇
  2002年   31篇
  2001年   15篇
  2000年   25篇
  1999年   17篇
  1998年   18篇
  1997年   18篇
  1996年   11篇
  1995年   10篇
  1994年   12篇
  1993年   5篇
  1992年   3篇
  1991年   9篇
  1990年   7篇
  1989年   3篇
  1988年   1篇
  1987年   1篇
  1983年   1篇
排序方式: 共有1522条查询结果,搜索用时 15 毫秒
181.
One of the main objectives of land-use change models is to explore future land-use patterns. Therefore, the issue of addressing uncertainty in land-use forecasting has received an increasing attention in recent years. Many current models consider uncertainty by including a randomness component in their structure. In this paper, we present a novel approach for tuning uncertainty over time, which we refer to as the Time Monte Carlo (TMC) method. The TMC uses a specific range of randomness to allocate new land uses. This range is associated with the transition probabilities from one land use to another. The range of randomness is increased over time so that the degree of uncertainty increases over time. We compare the TMC to the randomness components used in previous models, through a coupled logistic regression-cellular automata model applied for Wallonia (Belgium) as a case study. Our analysis reveals that the TMC produces results comparable with existing methods over the short-term validation period (2000–2010). Furthermore, the TMC can tune uncertainty on longer-term time horizons, which is an essential feature of our method to account for greater uncertainty in the distant future.  相似文献   
182.
Using a set of numerical experiments from 39 CMIP5 climate models, we project the emergence time for 4°C global warming with respect to pre-industrial levels and associated climate changes under the RCP8.5 greenhouse gas concentration scenario. Results show that, according to the 39 models, the median year in which 4°C global warming will occur is 2084. Based on the median results of models that project a 4°C global warming by 2100, land areas will generally exhibit stronger warming than the oceans annually and seasonally, and the strongest enhancement occurs in the Arctic, with the exception of the summer season. Change signals for temperature go outside its natural internal variabilities globally, and the signal-to-noise ratio averages 9.6 for the annual mean and ranges from 6.3 to 7.2 for the seasonal mean over the globe, with the greatest values appearing at low latitudes because of low noise. Decreased precipitation generally occurs in the subtropics, whilst increased precipitation mainly appears at high latitudes. The precipitation changes in most of the high latitudes are greater than the background variability, and the global mean signal-to-noise ratio is 0.5 and ranges from 0.2 to 0.4 for the annual and seasonal means, respectively. Attention should be paid to limiting global warming to 1.5°C, in which case temperature and precipitation will experience a far more moderate change than the natural internal variability. Large inter-model disagreement appears at high latitudes for temperature changes and at mid and low latitudes for precipitation changes. Overall, the inter-model consistency is better for temperature than for precipitation.  相似文献   
183.
This paper investigates the possible sources of errors associated with tropical cyclone (TC) tracks forecasted using the Global/Regional Assimilation and Prediction System (GRAPES). In Part I, it is shown that the model error of GRAPES may be the main cause of poor forecasts of landfalling TCs. Thus, a further examination of the model error is the focus of Part II. Considering model error as a type of forcing, the model error can be represented by the combination of good forecasts and bad forecasts. Results show that there are systematic model errors. The model error of the geopotential height component has periodic features, with a period of 24 h and a global pattern of wavenumber 2 from west to east located between 60°S and 60°N. This periodic model error presents similar features as the atmospheric semidiurnal tide, which reflect signals from tropical diabatic heating, indicating that the parameter errors related to the tropical diabatic heating may be the source of the periodic model error. The above model errors are subtracted from the forecast equation and a series of new forecasts are made. The average forecasting capability using the rectified model is improved compared to simply improving the initial conditions of the original GRAPES model. This confirms the strong impact of the periodic model error on landfalling TC track forecasts. Besides, if the model error used to rectify the model is obtained from an examination of additional TCs, the forecasting capabilities of the corresponding rectified model will be improved.  相似文献   
184.
王毅  马杰  代刊 《气象》2018,44(1):53-64
中央气象台主观预报和数值模式对2016年7月20日华北强暴雨过程的中期预报出现了一定的误差,本文利用ECMWF(简称EC)集合预报和T639集合预报等资料对"7·20"华北强暴雨过程的中期预报效果进行了分析,结果发现:(1)EC集合预报在7月16日前后对降雨区及强度的预报出现了明显转折,其因是大尺度影响天气系统的预报发生了转折性变化,7月16日20:00起报的环流形势集合平均场对比15日20:00起报场显示,在河套地区附近500hPa低槽发展更深,其下游华北高压脊也更强,形成了移动缓慢"东高西低"的环流型,黄河气旋及中低层西南涡北抬加强,导致降雨预报更接近于实况;(2)集合敏感性分析发现对降雨中期预报敏感的区域与转折前后预报的环流差异的分布型一致,引起降雨预报转折的影响系统也是降雨中期预报不确定性的来源;(3)对于降雨预报最敏感的环流系统是黄河气旋,集合成员预报的黄河气旋偏西偏北,强度越强,则预报的京津冀地区降水量越大。  相似文献   
185.
Climate policy uncertainty significantly hinders investments in low-carbon technologies, and the global community is behind schedule to curb carbon emissions. Strong actions will be necessary to limit the increase in global temperatures, and continued delays create risks of escalating climate change damages and future policy costs. These risks are system-wide, long-term and large-scale and thus hard to diversify across firms. Because of its unique scale, cost structure and near-term availability, Reducing Emissions from Deforestation and forest Degradation in developing countries (REDD+) has significant potential to help manage climate policy risks and facilitate the transition to lower greenhouse gas emissions. ‘Call’ options contracts in the form of the right but not the obligation to buy high-quality emissions reduction credits from jurisdictional REDD+ programmes at a predetermined price per ton of CO2 could help unlock this potential despite the current lack of carbon markets that accept REDD+ for compliance. This approach could provide a globally important cost-containment mechanism and insurance for firms against higher future carbon prices, while channelling finance to avoid deforestation until policy uncertainties decline and carbon markets scale up.

Key policy insights

  • Climate policy uncertainty discourages abatement investments, exposing firms to an escalating systemic risk of future rapid increases in emission control expenditures.

  • This situation poses a risk of an abatement ‘short squeeze,’ paralleling the case in financial markets when prices jump sharply as investors rush to square accounts on an investment they have sold ‘short’, one they have bet against and promised to repay later in anticipation of falling prices.

  • There is likely to be a willingness to pay for mechanisms that hedge the risks of abruptly rising carbon prices, in particular for ‘call’ options, the right but not the obligation to buy high-quality emissions reduction credits at a predetermined price, due to the significantly lower upfront capital expenditure compared to other hedging alternatives.

  • Establishing rules as soon as possible for compliance market acceptance of high-quality emissions reductions credits from REDD+ would facilitate REDD+ transactions, including via options-based contracts, which could help fill the gap of uncertain climate policies in the short and medium term.

  相似文献   
186.
Space-time prisms envelop all spatio-temporal locations that moving objects may have visited between two of their known spatio-temporal locations, given a bound on their travel speed. In this context, the known locations are often the result of observations or measurements, and they are called ‘anchor points’. The classic space-time prism, in isotropic two-dimensional space, as well as in transportation networks, assumes that the measurements of these anchor points are exact. Whereas, in many applications, we can assume that time can be measured fairly precisely, this assumption is unrealistic for the spatial components of measured locations (we think of Global Positioning System (GPS) errors, for instance). In this paper, we extend the classical prism from anchor points to circular ‘anchor regions’ that capture the uncertainty or error on their measurement. We define the notion of a space-time prism with uncertain anchor points, called uncertain prism, for short. We study the geometry of uncertain prisms in an arbitrary metric space to make this concept as widely applicable as possible. We also focus on the rims of uncertain space-time prisms, which demarcate the area that a moving object can have visited between two anchor regions (given some local speed limitations).  相似文献   
187.
Travel time uncertainty has significant impacts on individual activity-travel scheduling, but at present these impacts have not been considered in most accessibility studies. In this paper, an accessibility evaluation framework is proposed for urban areas with uncertain travel times. A reliable space-time service region (RSTR) model is introduced to represent the space-time service region of a facility under travel time uncertainty. Based on the RSTR model, four reliable place-based accessibility measures are proposed to evaluate accessibility to urban services by incorporating the effects of travel time reliability. To demonstrate the applicability of the proposed framework, a case study using large-scale taxi tracking data is carried out. The results of the case study indicate that the proposed accessibility measures can evaluate large-scale place-based accessibility well in urban areas with uncertain travel times. Conventional place-based accessibility indicators ignoring travel time reliability can significantly overestimate the accessibility to urban services.  相似文献   
188.
杨云  丁蕾  权继梅  崇伟 《气象科技》2017,45(2):209-216
通过对世界辐射基准传递到我国省级工作级标准总辐射表的不确定度进行分析和评估,确定了量值传递过程中不确定度来源主要包括测量重复性、输出电压值、太阳入射角变化、热偏移以及标准器等引入的不确定度,得出我国省级工作级标准总辐射表校准结果的不确定度为0.6%。我国采用"成分和"法对省级太阳总辐射标准量值进行传递,其标准器引入的不确定度系标准直接辐射表(0.3%)和标准散射辐射表(1.0%)的合成,标准器引入的不确定度所占比例达90%以上,因此提高标准直接辐射和标准散射辐射的测量确定度是减小量值传递不确定度的关键。此外太阳辐射量值传递的准确性受天气条件的影响较大,选择天气稳定,大气透明度高的天气以及太阳高度角大于30°的时段;增加测量次数以减小测量数据的分散性,降低重复性测量引入的不确定度;对被校准总辐射表进行通风,以减小热偏移的影响;保证仪器安装水平以及准确跟踪遮光,可以进一步减小量值传递的不确定度,提高我国短波辐射的测量水平。  相似文献   
189.
本文研究是针对全球森林覆盖变化检测系统的大训练样本选择的优化问题。样本自动标记系统自动标记了"千万个"代表森林和非森林的像元。为了提高精度和效率,我们需要从千万个样本的大样本集中选择对训练分类器有益的样本。本文提出了两种方法:第一种方法是传统的分层等距离采样;第二种方法是基于不确定性的样本优化,通过研究相同样本间的相似性度量指标、样本不确定性度量指标及样本特征空间分布,来实现基于不确定性的训练样本选择策略。实验通过精度评价验证了基于不确定性的采样策略能比传统的分层等距离采样策略获得好的效果。  相似文献   
190.
变形监测信号消噪的不确定度   总被引:1,自引:0,他引:1  
变形表现为一种弱信号,误差呈现为强噪声。小波包分解消噪是对分解中所得到的高频部分再继续细分,因此具有更精细的消噪能力。采用最优小波包基进行信号重构的过程中,信号有一定的损失。若将消噪过程近似成拟合,拟合误差符合正态分布,可以采用假设检验法估计信号重构误差的区间,进而确定信号重构误差的不确定度,评价小波包消噪的质量。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号