首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   122篇
  免费   11篇
  国内免费   13篇
测绘学   3篇
大气科学   2篇
地球物理   20篇
地质学   11篇
海洋学   85篇
综合类   13篇
自然地理   12篇
  2023年   1篇
  2021年   1篇
  2020年   4篇
  2019年   2篇
  2018年   5篇
  2017年   3篇
  2016年   1篇
  2015年   2篇
  2014年   3篇
  2013年   15篇
  2012年   5篇
  2011年   10篇
  2010年   4篇
  2009年   10篇
  2008年   9篇
  2007年   3篇
  2006年   8篇
  2005年   9篇
  2004年   10篇
  2003年   9篇
  2002年   4篇
  2001年   6篇
  2000年   2篇
  1999年   1篇
  1998年   5篇
  1997年   3篇
  1996年   5篇
  1995年   1篇
  1994年   1篇
  1993年   1篇
  1992年   1篇
  1991年   1篇
  1990年   1篇
排序方式: 共有146条查询结果,搜索用时 406 毫秒
41.
从桉树枯叶中分离到的4株微生物菌株,对好食脉孢霉(Neurospora sitophila)具有拮抗作用。其中ED013、ED018和ED015抑菌圈之间差异不显著,与对照无菌水和多菌灵有极显著性的差异。ED014抑菌圈比前3个菌株效果差,但也与照无菌水和多菌灵有极显著性的差异。根据形态特点及生理生化测定结果鉴定4株菌株属于芽孢杆菌(Bacillusspp.)。  相似文献   
42.
一株产海藻糖合成酶南极海洋低温细菌的鉴定   总被引:2,自引:0,他引:2       下载免费PDF全文
俞勇  李会荣  陈波  曾胤新 《极地研究》2005,17(2):127-133
从南极普里兹湾海域海水中分离到一株产海藻糖合成酶的海洋低温细菌BSw10041,革兰氏阴性,杆状,有极生鞭毛,能运动,菌落半透明。进行了常规生理生化和BIOLOG GN2细菌鉴定系统测试,结果表明菌株BSw10041与恶臭假单胞菌(Pseudomonas putida)的表型特征非常相似。为了进一步确定菌株BSw10041的分类学地位,测定了其16S rDNA序列,分析了相关细菌相应序列的同源性,构建了系统发育树,结果表明BSw10041与P.putida的亲缘关系最近。综合上述结果,菌株BSw10041可鉴定为Pseudomonas putida,定名为Pseudomonas putida BSw10041。  相似文献   
43.
44.
Intertidal soft-sediments biomass and metabolism are naturally heterogeneous in time and space at different scales. Particular perturbations such as freshwater seepages and seasonal proliferation of ephemeral macroalgae can intermittently and/or locally create additional variability in these systems. Since the impacts of such environmental stresses on natural processes are not well understood, the hypothesis that they would affect the functioning of the benthic system was tested. An intertidal bay whose structure and functioning has been previously described and where a carbon budget has been calculated, was chosen. The results showed that the metabolism of the intertidal sediments was greatly impacted by the above perturbations. Freshwater seepage increased meiofauna and microalgae biomasses and enhanced the total benthic metabolism (increasing community respiration and gross primary production until 4 and 2 fold respectively) without altering its seasonal trend. Ephemeral macroalgae proliferation had a more important effect on the total benthic metabolism, increasing community respiration and gross primary production 8 and 12 fold respectively and leading to a change in the seasonal trend.  相似文献   
45.
由黄海底泥分离得到1株能够稳定高产蛋白酶的菌株,命名为HW08.对该菌株进行形态特征、生理生化分析表明,其为革兰氏阴性杆菌,极生单鞭毛,非发酵型,严格需氧,细胞内不积累多羟基丁酸作为储藏碳源,氧化酶阴性.将该菌16S rDNA序列(GenBank登录号FJ999660)和假单胞菌属中模式菌株16S rDNA序列进行比对...  相似文献   
46.
47.
The effects of varying nitrogen (N): phosphorus (P) ratios on the growth and N-uptake and assimilation of the harmful dinoflagellates Prorocentrum minimum and Prorocentrum donghaiense were examined in turbidistat culture experiments. Algal cultures were supplied with media containing PO34? in various concentrations to obtain a wide range of N:P ratios. Experiments to determine rates of N uptake and assimilation of different N sources (NO3?, NH4+, urea and glycine by P. minimum and NO3?, NH4+ by P. donghaiense) were conducted using 15N tracer techniques at each N:P ratio. The growth rates suggested nutrient limitation at both high and low N:P ratios relative to the Redfield ratio. On a diel basis, the growth of both species was regulated by the light-dark cycle, which may be a result of regulation of both light- dependent growth and light-independent nutrient uptake. Maximum growth rates of both species always occurred at the beginning of light phase. In P-rich medium (low N:P ratio), both species had higher N assimilation rates, suggesting N limitation. Low assimilation coefficients at high N:P ratios suggested P limitation of N uptake and assimilation. NO3? and NH4+ contributed more than 90% of the total N uptake of P. minimum. Reduced N sources were more quickly assimilated than NO3?. Highest average daily growth rates were recorded near an N:P ratio of 12 for both species. The N uptake rates of cultures at N:P ratios near Redfield ratio were more balanced with growth rates. The linkage between growth rates and N uptake/assimilation rates were conceptually described by the variation of cell N quota. The N:P ratios affect the N uptake and growth of Prorocentrum spp., and may regulate their bloom progression in eutrophic ecosystems.  相似文献   
48.
Discharge of heavy metals from metal processing industries is known to have adverse effects on the environment. Biosorption of heavy metals by metabolically inactive biomass of microbial organisms is an innovative and alternative technology for removal of these pollutants from aqueous solution. The search of marine actinobacteria with potential heavy metal biosorption ability resulted in the identification of a novel alkalophilic Streptomyces VITSVK5 species. The biosorption property of Streptomyces VITSVK5 spp. was investigated by absorbing heavy metals Cadmium (Cd) and Lead (Pb). Physiochemical characteristics and trace metal concentration analysis of the backwater showed the concentrations of different metals were lead 13±2.1 μg L−1, cadmium 3.1±0.3μg L−1, zinc 8.4±2.6μg L−1 and copper 0.3±0.1μg L−1, whereas mercury was well below the detection limit. The effect of pH and biomass dosage on removal efficiency of heavy metal ions was also investigated. The optimum pH for maximal biosorption was 4.0 for Cd (II) and 5.0 for Pb (II) with 41% and 84% biosorption respectively. The biosorbent dosage was optimized as 3 g L-1 for both the trace metals. Fourier transform infrared absorption spectrum results indicated the chemical interactions of hydrogen atoms in carboxyl (-COOH), hydroxyl (-CHOH) and amine (-NH2) groups of biomass with the metal ions. This could be mainly involved in the biosorption of Cd (II) and Pb (II) onto Streptomyces VITSVK5 spp. The results of our study revealed Streptomyces metabolites could be used to develop a biosorbent for adsorbing metal ions from aqueous environments.  相似文献   
49.
Biomarkers, which can detect changes at the biochemical level, have been used for many years as early warning tools in environmental monitoring. In order to distinguish between natural variability and the potential effects of anthropogenic pollution, it is essential to identify background levels and establish the potential influence of abiotic (season, temperature and salinity) and biotic (gametogenesis) factors. In this study, we examined various biomarkers of stress (glutathione S-transferase (GST)), reproduction (vitellin-like proteins) and damage (lipid peroxidation (LPO) and DNA damage (DNA)) in marine mussels (Mytilus spp.) from a known pristine hybrid zone. Levels of all biomarker expression varied between seasons and appeared to be linked to the reproductive cycle. Oxidative stress in winter, with low GST expression and a higher expression of LPO and DNA damage displayed could be explained by low food availability. These data provide vital baseline information for future ecotoxicological and environmental monitoring studies.  相似文献   
50.
The influence of seasonal and environmental parameters on the occurrence of bacteria was investigated in two clam species (Venerupis pullastra and Ruditapes philippinarum), water and sediment from the Tagus estuary. Total viable counts (TVC), Escherichia coli, Salmonella spp. and Vibrio spp. were evaluated during one-year. Overall, significant seasonal variations were found in both sampling sites, especially for E. coli and Vibrio spp. levels. In summer, significantly higher Vibrio spp. levels were found in R. philippinarum and sediment samples, but not in V. pullastra clams and water samples. In contrast, significantly higher TVC and E. coli levels were observed in winter months in water and sediment samples. Salmonella spp. was generally isolated when higher levels of E. coli were detected, particularly in R. philippinarum. This study is useful for authorities to develop monitoring strategies for coastal contamination and to estimate human health risks associated with the consumption of bivalves.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号