首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4145篇
  免费   577篇
  国内免费   1061篇
测绘学   55篇
大气科学   522篇
地球物理   810篇
地质学   2144篇
海洋学   1115篇
天文学   99篇
综合类   212篇
自然地理   826篇
  2024年   25篇
  2023年   91篇
  2022年   213篇
  2021年   188篇
  2020年   183篇
  2019年   220篇
  2018年   185篇
  2017年   176篇
  2016年   200篇
  2015年   217篇
  2014年   289篇
  2013年   344篇
  2012年   295篇
  2011年   337篇
  2010年   197篇
  2009年   300篇
  2008年   289篇
  2007年   234篇
  2006年   258篇
  2005年   196篇
  2004年   194篇
  2003年   145篇
  2002年   140篇
  2001年   127篇
  2000年   130篇
  1999年   109篇
  1998年   94篇
  1997年   75篇
  1996年   58篇
  1995年   52篇
  1994年   34篇
  1993年   35篇
  1992年   18篇
  1991年   18篇
  1990年   14篇
  1989年   7篇
  1988年   17篇
  1987年   5篇
  1986年   16篇
  1985年   19篇
  1984年   12篇
  1983年   6篇
  1982年   10篇
  1981年   9篇
  1980年   1篇
  1976年   1篇
排序方式: 共有5783条查询结果,搜索用时 15 毫秒
891.
台湾海峡西部沉积物中碳的来源及埋藏   总被引:4,自引:1,他引:3  
根据2005年夏季航次观测的沉积物中总有机碳(TOC)、无机碳(CaCO3)、总氮(TN)、悬浮体颗粒有机碳(POC)、沉积物粒度数据得出,台湾海峡西部表层沉积物TOC质量分数的范围为0.01~1.79,平均值为0.37±0.24,略高于20多年前台湾海峡南部海区,而低于台湾海峡中、北部海区;TOC的质量分数湾内比湾外...  相似文献   
892.
2008年7月至9月,中国第3次北极科学考察期间,在走航路线上利用黑碳仪对黄海-日本海-鄂霍次克海-西北太平洋-白令海-楚科奇海-加拿大海盆等海区上的黑碳气溶胶浓度进行连续观测,最北观测位置达85°21.3′N.观测结果显示,北冰洋是全航线黑碳浓度最低的海区,平均浓度为(5.3±3.7)ng/m3;在70°N以北的海区...  相似文献   
893.
Dark respiration (non-photorespiratory mitochondrial respiration),which occurs both in the light and in darkness,is vital for growth and survival of algae and plays a critical role in modulating the carbon balance of them.In the present study,we have investigated dark respiration in the light (R L) and in darkness (R D) in three marine macroalgal species,Hizikia fusiformis (phaeophyta),Gracilaria lemaneiformis (Rhodophyta) and Ulva lactuca (Chlorophyta),cultured at 20℃ using aeration with two CO 2 conditions:current ambient (CO 2 concentration about 380 μl/L) and elevated CO 2 (approximately 720 μl/L) air.R L was estimated by using the Kok method,whereas R D was determined as the rate of O 2 influx at zero light.The results showed that both R L and R D were unchanged for the elevated CO 2-grown algae relative to ambient CO 2 concentration for all the algal species tested.However,R L was significantly lower than R D across all the algal species and growth CO 2 treatments,demonstrating that daytime respiration was partly depressed by the light.The percentage of inhibition of respiration by light was similar between ambient and elevated CO 2 grown algae.The ratio of respiration to photosynthesis,which tended to decrease when estimated using R L instead of R D,was not altered for the elevated relative to ambient CO 2 concentration.The results suggest that R L,rather than R D,is a more accurate estimate of nonphotorespiratory carbon loss in marine macroalgae during the daytime.It would not be anticipated that elevated atmospheric CO 2 would exert a substantial influence on respiratory flux either in the light or in darkness in these particular marine macroalgal species.  相似文献   
894.
895.
http://www.sciencedirect.com/science/article/pii/S1674987111000156   总被引:1,自引:0,他引:1  
Employing the Unit Soil Carbon Amount (USCA) approach, soil carbon storage was calculated across the Northeast Plain of China based on the Multi-purpose Regional Geochemical Survey conducted in 2004 – 2006 (MRGS). The results indicated that the soil organic carbon (SOC) storage in topsoil (0 – 0.2 m), subsoil (0 – 1 m) and deep soil (0 – 1.8 m) was 768.1 Mt, 2978.4 Mt and 3729.2 Mt with densities of 3327.8 t/km2, 12,904.7 t/km2 and 16,157.5 t/km2, respectively. These values were consistent with national averages, whereas the soil carbon densities showed a clear increasing trend from the southern area of the Northeast Plain (Liaoning), to the middle (Jilin) and the northern Plain (Heilongjiang) — particularly in terms of topsoil carbon density, which increased from 2284.2, to 3436.7 and 3861.5 t/km2, respectively. In comparison to carbon data obtained from the Second National Soil Survey in 1984 – 1986 (SNSS), the topsoil SOC storage values from the MRGS were found to have decreased by 320.59 Mt (29.4%), with an average annual decline of 16.0 Mt (l.73%) over the 20 years. In the southern, middle and northern areas of the plain, soil carbon densities decreased by 1060.6 t/km2, 1646.4 t/km2 and 1300.2 t/km2, respectively, with an average value of 1389.0 t/km2 for the whole plain. These findings indicate that the decrease in soil carbon density varied according to the different ecosystems and land use types. Therefore, ratios of soil carbon density were calculated in order to study the carbon dynamic balance between ecosystems, and to further explore distribution characteristics, as well as the sequestration potential of SOC.  相似文献   
896.
How dissolved organic matter (DOM) undergoes chemical changes during its transit from river to ocean remains a challenge due to its complex structure. In this study, DOM along a river transect from black waters to marine waters is characterized using an offline combination of reversed-phase high performance liquid chromatography (RP-HPLC) coupled to electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (ESI-FTICR-MS), as well as tandem ESI-FTICR-MS. In addition, a water extract from degraded wood that mainly consists of lignins is used for comparison to the DOM from this transect. The HPLC chromatograms of all DOM samples and the wood extract show two major well-separated components; one is hydrophilic and the other is hydrophobic, based on their elution order from the C18 column. From the FTICR-MS analysis of the HPLC fractions, the hydrophilic components mainly contain low molecular weight compounds (less than 400 Da), while the hydrophobic fractions contain the vast majority of compounds of the bulk C18 extracted DOM. The wood extract and the DOM samples from the transect of black waters to coastal marine waters show strikingly similar HPLC chromatograms, and the FTICR-MS analysis further indicates that a large fraction of molecular formulas from these samples are the same, existing as lignin-like compounds. Tandem mass spectrometry experiments show that several representative molecules from the lignin-like compounds have similar functional group losses and fragmentation patterns, consistent with modified lignin structural entities in the wood extract and these DOM samples. Taken together, these data suggest that lignin-derived compounds may survive the transit from the river to the coastal ocean and can accumulate there because of their refractory nature.  相似文献   
897.
There has been more attention to phytoplankton dynamics in nutrient-rich waters than in oligotrophic ones thus requiring the need to study the dynamics and responses in oligotrophic waters. Accordingly, phytoplankton community in Blanes Bay was overall dominated by Prymnesiophyceae, remarkably constant throughout the year (31 ± 13% Total chlorophyll a, Tchl a) and Bacillariophyta with a more episodic appearance (20 ± 23% Tchl a). Prasinophyceae and Synechococcus contribution became substantial in winter (Prasinophyceae = 30% Tchl a) and summer (Synechococcus = 35% Tchl a). Phytoplankton growth and grazing mortality rates for major groups were estimated by dilution experiments in combination with high pressure liquid chromatography and flow cytometry carried out monthly over two years. Growth rates of total phytoplankton (range = 0.30–1.91 d−1) were significantly higher in spring and summer (μ > 1.3 d−1) than in autumn and winter (μ ∼ 0.65 d−1) and showed a weak dependence on temperature but a significant positive correlation with day length. Microzooplankton grazing (range = 0.03–1.4 d−1) was closely coupled to phytoplankton growth. Grazing represented the main process for loss of phytoplankton, removing 60 ± 34% (±SD) of daily primary production and 70 ± 48% of Tchl a stock. Chla synthesis was highest during the Bacillarophyceae-dominated spring bloom (Chl asynt = 2.3 ± 1.6 μg Chl a L−1 d−1) and lowest during the following post-bloom conditions dominated by Prymnesiophyceae (Chl asynt = 0.23 ± 0.08 μg Chl a L−1 d−1). This variability was smoothed when expressed in carbon equivalents mainly due to the opposite dynamics of C:chl a (range = 11–135) and chl a concentration (range = 0.07–2.0 μg chl a L−1). Bacillariophyta and Synechococcus contribution to C fluxes was higher than to biomass because of their fast-growth rate. The opposite was true for Prymnesiophyceae.  相似文献   
898.
We have compiled carbonate chemistry and sedimentary CaCO3% data for the deep-waters (>1500 m water depth) of the southwest (SW) Pacific region. The complex topography in the SW Pacific influences the deep-water circulation and affects the carbonate ion concentration ([CO32−]), and the associated calcite saturation horizon (CSH, where ??calcite=1). The Tasman Basin and the southeast (SE) New Zealand region have the deepest CSH at ∼3100 m, primarily influenced by middle and lower Circumpolar Deep Waters (m or lCPDW), while to the northeast of New Zealand the CSH is ∼2800 m, due to the corrosive influence of the old North Pacific deep waters (NPDW) on the upper CPDW (uCPDW). The carbonate compensation depth (CCD; defined by a sedimentary CaCO3 content of <20%), also varies between the basins in the SW Pacific. The CCD is ∼4600 m to the SE New Zealand, but only ∼4000 m to the NE New Zealand. The CaCO3 content of the sediment, however, can be influenced by a number of different factors other than dissolution; therefore, we suggest using the water chemistry to estimate the CCD. The depth difference between the CSH and CCD (??ZCSH−CCD), however, varies considerably in this region and globally. The global ??ZCSH−CCD appears to expand with increase in age of the deep-water, resulting from a shoaling of the CSH. In contrast the depth of the chemical lysocline (??calcite=0.8) is less variable globally and is relatively similar, or close, to the CCD determined from the sedimentary CaCO3%. Geochemical definitions of the CCD, however, cannot be used to determine changes in the paleo-CCD. For the given range of factors that influence the sedimentary CaCO3%, an independent dissolution proxy, such as the foraminifera fragmentation % (>40%=foraminiferal lysocline) is required to define a depth where significant CaCO3 dissolution has occurred back through time. The current foraminiferal lysocline for the SW Pacific region ranges from 3100-3500 m, which is predictably just slightly deeper than the CSH. This compilation of sediment and water chemistry data provides a CaCO3 dataset for the present SW Pacific for comparison with glacial/interglacial CaCO3 variations in deep-water sediment cores, and to monitor future changes in [CO32−] and dissolution of sedimentary CaCO3 resulting from increasing anthropogenic CO2.  相似文献   
899.
Moored sediment traps were deployed from January 2004 through December 2007 at depths of 550 and 800 m in San Pedro Basin (SPB), CA (33°33.0′N, 118°26.5′W). Additionally, floating sediment traps were deployed at 100 and 200 m for periods of 12-24 h during spring 2005, fall 2007, and spring 2008. Average annual fluxes of mass, particulate organic carbon (POC), ??13Corg, particulate organic nitrogen (PON), ??15N-PON, biogenic silica (bSiO2), calcium carbonate (CaCO3), and detrital material (non-biogenic) were coupled with climate records and used to examine sedimentation patterns, vertical flux variability, and organic matter sources to this coastal region. Annual average flux values were determined by binning data by month and averaging the monthly averages. The average annual fluxes to 550 m were 516±42 mg/m2 d for mass (sdom of the monthly averages, n=117), 3.18±0.26 mmol C/m2 d for POC (n=111), 0.70±0.05 mmol/m2 d for CaCO3 (n=110), 1.31±0.21 mmol/m2 d for bSiO2 (n=115), and 0.35±0.03 mmol/m2 d for PON (n=111). Fluxes to 800 and to 550 m were similar, within 10%. Annual average values of ??13Corg at 550 m were −21.8±0.2‰ (n=108), and ??15N averages were 8.9±0.2‰ (n=95). The timing of both high and low flux particle collection was synchronous between the two traps. Given the frequency of trap cup rotation (4-11 days), this argues for particle settling rates ≥83 m/d for both high and low flux periods. The moored traps were deployed over one of the wettest (2004-2005, 74.6 cm rainfall) and driest (2006-2007, 6.6 cm) rain years on record. There was poor correlation (Pearson's correlation coefficient, 95% confidence interval) of detrital mass flux with: Corg/N ratio (r=0.10, p=0.16); ??15N (r=−0.19, p=0.02); and rainfall (r=0.5, p=0.43), suggesting that runoff does not immediately cause increases in particle fluxes 15 km offshore. ??13Corg values suggest that most POC falling to the basin floor is marine derived. Coherence between satellite-derived chlorophyll a records from the trap location (±9 km2 resolution) and SST data indicates that productivity and export occurs within a few days of upwelling and both of these parameters are reasonable predictors of POC export, with a time lag of a few days to 2 weeks (with no time lag—SeaWiFS chlorophyll a and POC flux, r=0.25, p=0.0014; chlorophyll a and bSiO2 flux, r=0.28, p=0.0002).  相似文献   
900.
大洋海区海-气CO_2通量单参数遥感算法的适用性检验   总被引:1,自引:0,他引:1  
王郝京 《台湾海峡》2011,30(2):286-291
利用卫星遥感技术的优势,基于LDEO数据库的全球海表二氧化碳分压(PCO2)及海表温度(SST)等实测数据,初步建立东太平洋海区PCO2与SST的单参数经验算法,并采用相同区域的独立实测数据检验.结果表明,单参数算法在寡营养大洋海区具有良好的适用性,反演值与实测值之间的均方根误差(RMS)为0.51 Pa(1 Pa=9.869μatm),由此估算出2003年6月该海域CO2通量为-1.4 mmol/(m2.d),与实测估算的碳通量基本相符,能够很好地反映出海区CO2源汇特征.将该遥感算法运用到西大西洋海域(15°~25°N,60°~75°W),反演值与实测值之间均方根误差(RMS)为0.69 Pa.检验结果表明,在寡营养大洋海区,单参数遥感算法具有一定的适用性,在受相似因子调控的同纬度海区可以使用同一遥感算法.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号