首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1859篇
  免费   260篇
  国内免费   339篇
测绘学   250篇
大气科学   224篇
地球物理   433篇
地质学   573篇
海洋学   440篇
天文学   54篇
综合类   126篇
自然地理   358篇
  2024年   7篇
  2023年   27篇
  2022年   62篇
  2021年   82篇
  2020年   81篇
  2019年   82篇
  2018年   60篇
  2017年   99篇
  2016年   77篇
  2015年   95篇
  2014年   118篇
  2013年   200篇
  2012年   95篇
  2011年   104篇
  2010年   96篇
  2009年   144篇
  2008年   121篇
  2007年   121篇
  2006年   111篇
  2005年   82篇
  2004年   78篇
  2003年   78篇
  2002年   60篇
  2001年   42篇
  2000年   43篇
  1999年   43篇
  1998年   30篇
  1997年   47篇
  1996年   31篇
  1995年   16篇
  1994年   29篇
  1993年   16篇
  1992年   21篇
  1991年   6篇
  1990年   7篇
  1989年   12篇
  1988年   5篇
  1987年   6篇
  1986年   2篇
  1985年   5篇
  1984年   3篇
  1983年   5篇
  1982年   3篇
  1981年   2篇
  1980年   1篇
  1979年   3篇
排序方式: 共有2458条查询结果,搜索用时 140 毫秒
71.
数学形态学着重于分析和处理图像的几何结构信息。根据这一原理,在图像分类预处理过程中,对各种地物区域的几何结构特点进行分析,构造相应的结构元素,然后对图像进行形态迭代分解法(IMD,Iterative Morphological Decompostion)变换。在变换结果中,地物区域的灰度信息进行了归一化处理,同时区域的几何结构特点和独立地物得到了有效保留。将多光谱图像的IMD变换结果进行分类实验的结果表明,该方法可以有效提高多光谱图像分类的精度和效率,具有较强的适用性。  相似文献   
72.
Channel cross‐sectional changes since construction of Livingston Dam and Lake Livingston in 1968 were studied in the lower Trinity River, Texas, to test theoretical models of channel adjustment, and to determine controls on the spatial extent of channel response. High and average flows were not significantly modified by the dam, but sediment transport is greatly reduced. The study is treated as an opportunistic experiment to examine the effects of a reduction in sediment supply when discharge regime is unchanged. Channel scour is evident for about 60 km downstream, and the general phenomena of incision, widening, coarsening of channel sediment and a decrease in channel slope are successfully predicted, in a qualitative sense, by standard models of channel response. However, there is no consistent channel response within this reach, as various qualitatively different combinations of increases, decreases or no change in width, depth, slope and roughness occur. These multiple modes of adjustment are predicted by the unstable hydraulic geometry model. Between about 60 km and the Trinity delta 175 km downstream of the dam, no morphological response to the dam is observed. Rather than a diminution of the dam's effects on fluvial processes, this is due to a fundamental change in controls of the fluvial system. The downstream end of the scour zone corresponds to the upstream extent of channel response to Holocene sea level rise. Beyond 60 km downstream, the Trinity River is characterized by extensive sediment storage and reduced conveyance capacity, so that even after dam construction sediment supply still exceeds transport capacity. The channel bed of much of this reach is near or below sea level, so that sea level rise and backwater effects from the estuary are more important controls on the fluvial system than upstream inputs. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   
73.
This paper explores how, and to what extent, a phase of relief-rejuvenation modifies the mode of surface erosion in an approximately 63 km2 drainage basin located at the northern border of the Swiss Alps (Luzern area). In the study area, the retreat of the Alpine glaciers at the end of the Last Glacial Maximum (LGM) caused base level to lower by approximately 80 m. The fluvial system adapted to the lowered base level by headward erosion. This is indicated by knickzones in the longitudinal stream profiles and by the continuous upstream narrowing of the width of the valley floor towards these knickzones. In the headwaters above these knickzones, processes are still to a significant extent controlled by the higher base level of the LGM. There, frequent exposure of bedrock in channels and especially on hillslopes implies that sediment flux is to a large extent limited by weathering rates. In the knickzones, however, exposure of bedrock in channels implies that sediment flux is supply-limited, and that erosion rates are controlled by stream power.The morphometric analysis reveals the existence of length scales in the topography that result from distinct geomorphic processes. Along the tributaries where the upstream sizes of the drainage basins exceed 100,000–200,000 m2, the mode of sediment transport and erosion changes from predominantly hillslope processes (i.e., landsliding, creep of regolith, rock avalanches and to some extent debris flows) to processes in channels (fluvial processes and debris flows). This length scale reflects the minimum size of the contributing area for channelized processes to take over in the geomorphic development (i.e., threshold size of drainage basin). This threshold size depends on the ratio between production rates of sediment on hillslopes, and export rates of sediment by processes in channels. Consequently, in the headwaters, erosion rates and sediment flux, and hence landscape evolution rates, are to a large extent limited by weathering processes. In contrast, in the lower portion of the drainage basin that adjusts to the lowered base-level, rates of channelized erosion and relief formation are controlled mainly by stream power. Hence, this paper shows that base-level lowering, headward erosion and establishment of knickzones separate drainage basins in two segments with different controls on rates of surface erosion, sediment flux and relief formation.  相似文献   
74.
We compared median runoff (R) and precipitation (P) relationships over 25 years from 20 mesoscale (50 to 5,000 km2) catchments on the Boreal Plains, Alberta, Canada, to understand controls on water sink and source dynamics in water‐limited, low‐relief northern environments. Long‐term catchment R and runoff efficiency (RP?1) were low and varied spatially by over an order of magnitude (3 to 119 mm/year, 1 to 27%). Intercatchment differences were not associated with small variations in climate. The partitioning of P into evapotranspiration (ET) and R instead reflected the interplay between underlying glacial deposit texture, overlying soil‐vegetation land cover, and regional slope. Correlation and principal component analyses results show that peatland‐swamp wetlands were the major source areas of water. The lowest estimates of median annual catchment ET (321 to 395 mm) and greatest R (60 to 119 mm, 13 to 27% of P) were observed in low‐relief, peatland‐swamp dominated catchments, within both fine‐textured clay‐plain and coarse‐textured glacial deposits. In contrast, open‐water wetlands and deciduous‐mixedwood forest land covers acted as water sinks, and less catchment R was observed with increases in proportional coverage of these land covers. In catchments dominated by hummocky moraines, long‐term runoff was restricted to 10 mm/year, or 2% of P. This reflects the poor surface‐drainage networks and slightly greater regional slope of the fine‐textured glacial deposit, coupled with the large soil‐water and depression storage and higher actual ET of associated shallow open‐water marsh wetland and deciduous‐forest land covers. This intercatchment study enhances current conceptual frameworks for predicting water yield in the Boreal Plains based on the sink and source functions of glacial landforms and soil‐vegetation land covers. It offers the capability within this hydro‐geoclimatic region to design reclaimed catchments with desired hydrological functionality and associated tolerances to climate or land‐use changes and inform land management decisions based on effective catchment‐scale conceptual understanding.  相似文献   
75.
The North American Land Data Assimilation System project phase 2 (NLDAS‐2) has run four land surface models for a 30‐year (1979–2008) retrospective period. Land surface evapotranspiration (ET) is one of the most important model outputs from NLDAS‐2 for investigating land–atmosphere interaction or to monitor agricultural drought. Here, we evaluate hourly ET using in situ observations over the Southern Great Plains (Atmospheric Radiation Measurement/Cloud and Radiation Testbed network) for 1 January 1997–30 September 1999 and daily ET u‐sing in situ observations at the AmeriFlux network over the conterminous USA for an 8‐year period (2000–2007). The NLDAS‐2 models compare well against observations, with the National Centers for Environmental Prediction's Noah land surface model performing best, followed, in order, by the Variable Infiltration Capacity, Sacramento Soil Moisture Accounting, and Mosaic models. Daily evaluation across the AmeriFlux network shows that for all models, performance depends on season and vegetation type; they do better in spring and fall than in winter or summer and better for deciduous broadleaf forest and grasslands than for croplands or evergreen needleleaf forest. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
76.
本研究针对中国沿海银口天竺鲷属鱼类分类鉴定不清晰,同种异名多,种类误鉴等分类问题,结合形态特征比较与DNA条形码技术对其分类鉴定问题进行梳理。2014—2019年间于南海北部沿海采集101尾银口天竺鲷属鱼类标本,经形态学特征鉴定为:横带银口天竺鲷Jaydia striata(Smith&Radcliffe,1912),特征为体侧有7—11褐色宽横带,腹鳍、臀鳍浅灰色;印度洋银口天竺鲷J.striatodes(Gon,1997),特征为体侧有7—11褐色宽横带,臀鳍后缘黑色;白边银口天竺鲷J.novaeguineae(Valenciennes,1832),特征为臀鳍、尾鳍最下缘为白边;黑边银口天竺鲷J.truncata(Bleeker,1855)特征为第二背鳍、臀鳍中部有一平行基底的黑色带,尾鳍后缘黑色带略宽;史密斯银口天竺鲷J.smithi Kotthaus,1970,特征为第二背鳍中部有一平行基底的黑色纵带,尾鳍后缘黑色带略细;斑鳍银口天竺鲷J.carinatus (Cuvier,1828),特征为第二背鳍最末软条基底有一大黑斑;黑鳃银口天竺鲷J.poeciloptera (Cuvier,1828),特征为臀鳍淡黄色,鳍膜间有一暗点。研究发现Apogon arafurae并不是J.truncata同种异名,学名应更正为Jaydia poeciloptera。基于线粒体COI基因K2P遗传距离显示,J.striataJ.smithiJ.truncata种内遗传距离大于2%。构建NJ系统发育树发现红海、阿拉伯海和北部湾的J.smithi分成2个单系支。结合NJ树分析发现,J.smithiJ.poeciloptera均出现错误鉴定,认为GenBank上传的序列(MH085808、JQ681491)存在误鉴,实为J.poeciloptera。  相似文献   
77.
甲状腺(Glandula thyreoidea)是海洋脊椎动物体内重要的内分泌腺,从海洋脊椎动物开始,才有了独立的甲状腺结构。海洋脊椎动物的甲状腺一般为实质性的组织。实质由甲状腺滤泡组成,构成滤泡的上皮细胞合成、贮存和分泌的甲状腺激素是调节机体生长发育的关键激素。从海洋脊椎动物开始才有了独立的甲状腺结构。对于动物甲状腺的研究多集中在甲状腺形态及甲状腺与生长发育关系方面,而对海洋脊椎动物的甲状腺的研究则越来越多的集中于环境因素所引起的甲状腺病变方面,环境因素对甲状腺功能的影响也逐渐成为科学研究的重点。海洋水体污染导致的甲状腺机能受损,使海洋脊椎动物不能正常生长发育,数目与种类骤减之时,我们不得不重视对海洋脊椎动物甲状腺的研究。  相似文献   
78.
In the form of satellite ephemerides and clock parameters, the space datum and system time information of one global navigation satellite system (GNSS) is transferred to users. With the continuous updating in the satellite payload such as the high-precision atomic clock, the monitoring and tracking technique such as the inter-satellite link, and in the data processing technique, the accuracy and real-time performance of the satellite ephemeris and clock error products are steadily improved. Starting from December 27th, 2018, the BeiDou Navigation System 3, or BDS-3, has provided the accurate and reliable basic positioning, navigation, and timing (PNT) service for the users in the countries within the “one belt and one road”. This paper has summarized the faced challenges of the precise orbit determination and time synchronization from the regional BDS-2 system to the BDS-3 global system, and the specific solutions at the control segment. In addition, this paper has compared the BDS with other GNSS systems in terms of technical characteristics. Finally, aiming at a higher accuracy and more reliable PNT service, the road map of precise orbit determination and time synchronization technique for the next generation navigation systems is discussed, which will provide a reference for developing the global navigation satellite systems with an even higher accuracy.  相似文献   
79.
The paper presents a new approach to calculating the erosion and deposition values of floodplain lake basins, the erosion–deposition index (EDI). The EDI is a sum of the basin geometry indices (BGIs), which can be calculated for a separate cross section of the lake. The distribution of processes within the basin was investigated in two selected floodplain lakes with the use of BGIs. Field research was carried out in the Bug River valley from 1 November 2006 to 31 October 2011. The highest erosion was observed in the lakes located close to the parent river. Deposition processes were observed in lakes with high inflow of groundwater. The results showed that EDI values of 48 out of the 71 floodplain lakes ranged from ?0.2 to 0.2. Spatial distribution of erosion and deposition processes within the lake basins resulted from a velocity of water inflowing or flowing through the basin. This was observed especially in contrafluent–confluent lake. Inflow of rivers water via upstream crevasse occurred later than via downstream one, but energy of flowing water was higher, which favoured erosion of this part of the lake basin. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
80.
River confluences and their associated tributaries are key morphodynamic nodes that play important roles in controlling hydraulic geometry and hyporheic water exchange in fluvial networks. However, the existing knowledge regarding hyporheic water exchange associated with river confluence morphology is relatively scarce. On January 14 and 15, 2016, the general hydraulic and morphological characteristics of the confluent meander bend (CMB) between the Juehe River and the Haohe River in the southern region of Xi'an City, Shaanxi Province, China, were investigated. The patterns and magnitudes of vertical hyporheic water exchange (VHWE) were estimated based on a one‐dimensional heat steady‐state model, whereas the sediment vertical hydraulic conductivity (Kv) was calculated via in situ permeameter tests. The results demonstrated that 6 hydrodynamic zones and their extensions were observed at the CMB during the test period. These zones were likely controlled by the obtuse junction angle and low momentum flux ratio, influencing the sediment grain size distribution of the CMB. The VHWE patterns at the test site during the test period mostly showed upwelling flow dominated by regional groundwater discharging into the river. The occurrence of longitudinal downwelling and upwelling patterns along the meander bend at the CMB was likely subjected to the comprehensive influences of the local sinuosity of the meander bend and regional groundwater discharge and finally formed regional and local flow paths. Additionally, in dominated upwelling areas, the change in VHWE magnitudes was nearly consistent with that in Kv values, and higher values of both variables generally occurred in erosional zones near the thalweg paths of the CMB, which were mostly made up of sand and gravel. This was potentially caused by the erosional and depositional processes subjected to confluence morphology. Furthermore, lower Kv values observed in downwelling areas at the CMB were attributed to sediment clogging caused by local downwelling flow. The confluence morphology and sediment Kv are thus likely the driving factors that cause local variations in the VHWE of fluvial systems.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号