首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   304篇
  免费   44篇
  国内免费   60篇
测绘学   5篇
大气科学   6篇
地球物理   93篇
地质学   160篇
海洋学   77篇
天文学   13篇
综合类   22篇
自然地理   32篇
  2022年   5篇
  2021年   16篇
  2020年   16篇
  2019年   14篇
  2018年   7篇
  2017年   14篇
  2016年   15篇
  2015年   16篇
  2014年   14篇
  2013年   16篇
  2012年   19篇
  2011年   20篇
  2010年   16篇
  2009年   13篇
  2008年   20篇
  2007年   28篇
  2006年   34篇
  2005年   14篇
  2004年   14篇
  2003年   11篇
  2002年   16篇
  2001年   11篇
  2000年   15篇
  1999年   6篇
  1998年   9篇
  1997年   8篇
  1996年   4篇
  1995年   4篇
  1994年   5篇
  1993年   2篇
  1992年   2篇
  1989年   1篇
  1986年   1篇
  1980年   2篇
排序方式: 共有408条查询结果,搜索用时 15 毫秒
91.
3个海域沙筛贝遗传差异的DNA分子标记研究   总被引:1,自引:0,他引:1  
本文运用RAPD(random amplified polymorphic DNA)技术,对3个海域的沙筛贝进行了地理遗传差异分析.结果表明福建东山湾与厦门马銮湾沙筛贝的遗传距离为0.2764,深圳湾与马銮湾沙筛贝的为0.3067,深圳湾与东山湾沙筛贝的为0.3305.这说明马銮湾与东山湾的沙筛贝种群遗传距离较近,而东山湾与深圳湾的沙筛贝种群遗传距离较大.对厦门马銮湾沙筛贝的18S rDNA进行了测序,在基因库上查得同科另外3个种的18S rDNA序列,构建了分子系统发育树,发现沙筛贝与Mytilopsis leucophaeata同源性比较高.  相似文献   
92.
南沙群岛微型与超微型真核藻类遗传多样性的初步研究   总被引:3,自引:0,他引:3  
用分子生物学方法建立了南沙海域5号采样点附近海域的微型、超微型真核藻类18S rDNA库,采用RFLP和基因测序的手段对其遗传多样性进行了初步探讨。研究表明南沙海域的微型、超微型藻类的遗传多样性十分丰富,而且尚有大量未获培养的、分类位置未知的物种有待研究。  相似文献   
93.
本研究自胶州湾分离了两种底栖硅藻,形态学初步鉴定为长菱形藻和新月细柱藻。对其18S rDNA和rbcL基因进行了测序并用邻接法构建了系统树。结果表明,两藻在18S rD-NA和rbcL基因序列上均存在较大的差异,基于DNA序列的分类结果与形态学分类结果一致。在依据形态指标难以确定藻类分类地位的情况下,18S rDNA和rbcL基因序列是有用的鉴定工具。  相似文献   
94.
Nitrate transport in the unsaturated zone of a riverbank filtration (RBF) system in Karany, Czech Republic, was studied. Previous study of the system estimated RBF recharge as 60% riverbank filtrate and 40% local groundwater contaminated by nitrates. Nitrate concentrations observed in RBF recently cannot be explained by simple groundwater contamination and a new conception of groundwater recharge is suggested. A two‐component model based on water 18O data modelled recharge of local groundwater. One component of groundwater recharge is rainfall and irrigation water moving through the unsaturated zone of the Quaternary sediments in piston flow. The second component is groundwater from the Cretaceous deposits with a free water table. Both the components of groundwater recharge have different nitrate concentrations, and resulting contamination of groundwater depends on the participation of water from Quaternary and Cretaceous deposits. Nitrates' origins and their mixing in the subsurface were traced by 15N data. Nitrate transport from the unsaturated zone is important and time variable source of groundwater contamination. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
95.
The stable isotopic (2H/1H and 18O/16O) composition of precipitation has been used for a variety of hydrological and paleoclimate studies, a starting point for which is the behaviour of stable isotopes in modern precipitation. To this end, daily precipitation samples were collected over a 7‐year period (2008–2014) at a semi‐arid site located at the Macquarie Marshes, New South Wales (Australia). The samples were analysed for stable isotope composition, and factors affecting the isotopic variability were investigated. The best correlation between δ 18O of precipitation was with local surface relative humidity. The reduced major axis precipitation weighted local meteoric water line was δ 2H = 7.20 δ 18O + 9.1. The lower slope and intercept (when compared with the Global Meteoric Water Line) are typical for a warm dry climate, where subcloud evaporation of raindrops is experienced. A previously published model to estimate the degree of subcloud evaporation and the subsequent isotopic modification of raindrops was enhanced to include the vertical temperature and humidity profile. The modelled results for raindrops of 1.0 mm radius showed that on average, the measured D‐excess (=δ 2H ? 8 δ 18O) was 19.8‰ lower than that at the base of the cloud, and 18% of the moisture was evaporated before ground level (smaller effects were modelled for larger raindrops). After estimating the isotopic signature at the base of the cloud, a number of data points still plotted below the global meteoric water line, suggesting that some of the moisture was sourced from previously evaporated water. Back trajectory analysis estimated that 38% of the moisture was sourced over land. Precipitation samples for which a larger proportion of the moisture was sourced over land were 18O and 2H‐enriched in comparison to samples for which the majority of the moisture was sourced over the ocean. The most common weather systems resulting in precipitation were inland trough systems; however, only East Coast Lows contributed to a significant difference in the isotopic values. Copyright © 2016 Australian Nuclear Science and Technology Organisation. Hydrological Processes. © 2016 John Wiley & Sons, Ltd.  相似文献   
96.
South China Sea (SCS) is a major moisture source region, providing summer monsoon rainfall throughout Mainland China, which accounts for more than 80% total precipitation in the region. We report seasonal to monthly resolution Sr/Ca and δ18O data for five Holocene and one modern Porites corals, each covering a growth history of 9–13 years. The results reveal a general decreasing trend in sea surface temperature (SST) in the SCS from 6800 to 1500 years ago, despite shorter climatic cycles. Compared with the mean Sr/Ca–SST in the 1990s (24.8 °C), 10-year mean Sr/Ca–SSTs were 0.9–0.5 °C higher between 6.8 and 5.0 thousand years before present (ky BP), dropped to the present level by 2.5 ky BP, and reached a low of 22.6 °C (2.2 °C lower) by 1.5 ky BP. The summer Sr/Ca–SST maxima, which are more reliable due to faster summer-time growth rates and higher sampling resolution, follow the same trend, i.e. being 1–2 °C higher between 6.8 and 5.0 ky BP, dropping to the present level by 2.5 ky BP, and reaching a low of 28.7 °C (0.7 °C lower) by 1.5 ky BP. Such a decline in SST is accompanied by a similar decrease in the amount of monsoon moisture transported out of South China Sea, resulting in a general decrease in the seawater δ18O values, reflected by offsets of mean δ18O relative to that in the 1990s. This observation is consistent with general weakening of the East Asian summer monsoon since early Holocene, in response to a continuous decline in solar radiation, which was also found in pollen, lake-level and loess/paleosol records throughout Mainland China. The climatic conditions 2.5 and 1.5 ky ago were also recorded in Chinese history. In contrast with the general cooling trend of the monsoon climate in East Asia, SST increased dramatically in recent time, with that in the 1990s being 2.2 °C warmer than that 1.5 ky ago. This clearly indicates that the increase in the concentration of anthropogenic greenhouse gases played a dominant role in recent global warming, which reversed the natural climatic trend in East Asian monsoon regime.  相似文献   
97.
Perennial bioenergy crops with deep (>1 m) rooting systems, such as switchgrass (Panicum virgatum L.), are hypothesized to increase carbon storage in deep soil. Deeply rooted plants may also affect soil hydrology by accessing deep soil water for transpiration, which can affect soil water content and infiltration in deep soil layers, thereby affecting groundwater recharge. Using stable H and O isotope (δ2H and δ18O) and 3H values, we studied the soil water conditions at 20–30 cm intervals to depths of 2.4–3.6 m in paired fields of switchgrass and shallow rooted crops at three sites in the southern Great Plains of North America. We found that soil under switchgrass had consistently higher soil water content than nearby soil under shallow-rooted annual crops by a margin of 15%–100%. Soil water content and isotopic depth profiles indicated that hydraulic redistribution of deep soil water by switchgrass roots explained these observed soil water differences. To our knowledge, these are the first observations of hydraulic redistribution in deeply rooted grasses, and complement earlier observations of dynamic soil water fluxes under shallow-rooted grasses. Hydraulic redistribution by switchgrass may be a strategy for drought avoidance, wherein the plant may actively prevent water limitation. This raises the possibility that deeply rooted grasses may be used to passively subsidize soil water to more shallow-rooted species in inter-cropping arrangements.  相似文献   
98.
This study investigated the effects of clear-cutting and the meteorological and physiological factors on forest evapotranspiration (ET), by using the water-budget method in the Kamabuchi experimental watershed (KMB; 38° 56′ 21″ N, 140° 15′ 58″ E) in northern Japan. Meteorological and discharge data collected during no-snow periods (from June to October) from 1939 were used to compare ET in three sub-watersheds: No. 1, where the forest had been left undisturbed, and No. 2 and No. 3, where Cryptomeria japonica was planted after clear-cutting. Paired watershed experiments revealed that clear-cutting caused ET to decrease by approximately 100 mm yr−1, and this reduction continued for more than 20 years, even after C. japonica was planted. ET fluctuated similarly across all watersheds, regardless of clear-cutting or planting. This fluctuation is mainly caused by solar radiation and temperature. Intrinsic water-use efficiency (iWUE) calculated using δ13C of tree-ring cellulose in C. japonica increased due to elevated atmospheric CO2 concentration. We estimated annual carbon fixation in a single tree as the annual net photosynthesis (A). Subsequently, transpiration (E) was calculated from the relationship between iWUE and A. The results showed that A and E per tree increased as the tree grew older; however, the trees' responses to increasing ca suppress the increase in ET. Moreover, the fluctuation of ET from the watershed was small compared to the fluctuation of P during the observation periods because the increase and decrease in E and interception loss complemented each other.  相似文献   
99.
Utilising datasets from the Global Network of Isotopes in Precipitation of the International Atomic Energy Agency, and previous isotopic studies, we investigated δ18O spatial and temporal patterns in Chinese precipitation. Significantly positive relationships existed between precipitation δ18O and air temperature above the north of 35°N and in high altitude regions above 32°N. Significantly negative relationships between precipitation δ18O and the precipitation amount existed below south of 35°N. These temperature and precipitation effects became stronger with increasing altitude except in high altitude regions between 32°N and 35°N. The NCEP/NCAR reanalysis data from 1980 to 2004 showed that variations in spatial and seasonal wind fields at 700 hpa and total precipitable water from the ground to the top of the atmosphere were correlated with the monthly spatial distribution of precipitation δ18O. Basing on this relationship, we established quantitative correlations between the mean monthly precipitation δ18O and both latitude and temperature in different seasons. We found that spatial variations in precipitation δ18O could be described well using the Bowen–Wilkinson model and second‐order equations developed during the present study only in winter (from December to February). During the rest of the year, patterns were too complex to predict using simple models. The results suggest that it is difficult to demonstrate variations of precipitation δ18O throughout the year and for all regions of China using a single model. Moreover, the new models for the relationships among precipitation, latitude, and temperature were better able to depict the variations in precipitation δ18O than the Bowen–Wilkinson model. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
100.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号