首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   20538篇
  免费   3947篇
  国内免费   4149篇
测绘学   1036篇
大气科学   1829篇
地球物理   4505篇
地质学   12326篇
海洋学   3501篇
天文学   57篇
综合类   1574篇
自然地理   3806篇
  2024年   107篇
  2023年   276篇
  2022年   605篇
  2021年   894篇
  2020年   818篇
  2019年   992篇
  2018年   790篇
  2017年   856篇
  2016年   858篇
  2015年   956篇
  2014年   1208篇
  2013年   1448篇
  2012年   1172篇
  2011年   1331篇
  2010年   1199篇
  2009年   1245篇
  2008年   1273篇
  2007年   1333篇
  2006年   1405篇
  2005年   1204篇
  2004年   1174篇
  2003年   1017篇
  2002年   939篇
  2001年   830篇
  2000年   748篇
  1999年   645篇
  1998年   586篇
  1997年   487篇
  1996年   433篇
  1995年   373篇
  1994年   336篇
  1993年   269篇
  1992年   186篇
  1991年   165篇
  1990年   111篇
  1989年   109篇
  1988年   65篇
  1987年   42篇
  1986年   33篇
  1985年   35篇
  1984年   19篇
  1983年   16篇
  1982年   12篇
  1981年   11篇
  1980年   6篇
  1979年   3篇
  1978年   10篇
  1973年   1篇
  1971年   3篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
951.
In this work, the possible exploitation of fiber-reinforced composites in the context of maritime transportation of compressed natural gas (CNG) is investigated. In addition to a more conventional steel configuration, two different fiber materials, carbon and glass, are considered as construction materials for pressure vessels (PVs) to be stored on board ships, with thickness optimized by FEM analysis.The considered scenario is represented by the transportation of CNG from an offshore well to a terminal on shore. Fleets of ships carrying CNG in pressure vessels manufactured with the investigated materials are generated by means of a ship synthesis model (SSM) software and compared on the basis of technical and economical indicators.The choice of the construction material influences considerably the weight of the PVs, which represent a major item of total ship weight and reflects directly on the general transport performances in terms of resistance, seakeeping and reliability in the service. On the other hand, capital as well as operating expenditures are considerably affected by the choice. When exploring the design space, the ship synthesis model is able, at a preliminary stage of the design, to account for the various technical and economical aspects, their implications and relationships. Results are presented of computations carried out in a specific case, identified by the annual gas production and other characteristics of the well terminal and a cruising route for the ships. The comparison is carried out on the basis of the cost per transported unit of gas and of the percentage of success in the transportation process. The computations show that the choice of the PV material has a key influence on the results in terms of optimal number, dimensions and speed of the ships.  相似文献   
952.
Salinity and periodic inundation are both known to have a major role in shaping the ecohydrology of mangroves through their controls on water uptake, photosynthesis, stomatal conductance, gas exchanges, and nutrient availability. Salinity, in particular, can be considered one of the main abiotic regulating factors for halophytes and salt‐tolerant species, due to its influence on water use patterns and growth rate. Ecohydrological literature has rarely focused on the effects of salinity on plant transpiration, based on the fact that the terrestrial plants mostly thrive in low‐saline, unsaturated soils where the role of osmotic potential can be considered negligible. However, the effect of salinity cannot be neglected in the case of tidal species like mangroves, which have to cope with hyperosmotic conditions and waterlogging. We introduce here a first‐order ecohydrological model of the soil/plant‐atmosphere continuum of Avicennia marina—also known as gray mangrove—a highly salt‐tolerant pioneer species able to adapt to hyperarid intertidal zones and characterized by unique morphological and ecophysiological traits. The A. marina's soil‐plant‐atmosphere continuum takes explicitly into account the role of water head, osmotic water potential, and water salinity in governing plant water fluxes. A. marina's transpiration is thus modeled as a function of salinity based on a simple parameterization of salt exclusion mechanisms at the root level and a modified Jarvis' expression accounting for the effects of salinity on stomatal conductance. Consistently with previous studies investigating the physiology of mangroves in response to different environmental drivers, our results highlight the major influence of salinity on mangrove transpiration when contrasted with other potential stressors such as waterlogging and water stress.  相似文献   
953.
A hydraulic invariance (HI)‐based methodology was developed as a tool to support implementation of storm flow control measures into land use master plans (LUMPs) for urban catchments. The methodology is based on the use of simple hydrologic analysis to compare predevelopment and postdevelopment catchment flow release scenarios. Differently from previous literature examples, for which the parcel scale is usually considered for the analysis, HI was pursued assuming the LUMP areas of transformation as the basic units for assigning storm water control measures in the form of flow release restrictions. The methodology was applied to a case study catchment in the southern part of the City of Catania (Italy), for which the LUMP re‐design has been recently proposed. Simulations were run based on the use of the EPA‐Storm Water Management Model and allowed deriving flow release restrictions in order to achieve HI at the subcatchment level for design events of different return period.  相似文献   
954.
955.
Haloxylon ammodendron is a desert shrub used extensively in China for restoring degraded dry lands. An understanding of the water source used by H. ammodendron plantations is critical achieving sustainable vegetation restoration. We measured mortality, shoot size, and rooting depth in 5‐, 10‐, 20‐, and 40‐year‐old H. ammodendron plantations. We examined stable isotopic ratios of oxygen (δ18O) in precipitation, groundwater, and soil water in different soil layers and seasons, and in plant stem water to determine water sources at different shrub ages. We found that water acquisition patterns in H. ammodendron plantations differed with plantation age and season. Thus, the main water source for 5‐year‐old shrubs was shallow soil water. Water sources of 10‐year‐old shrubs shifted depending on the soil water conditions during the season. Although their tap roots could absorb deep soil water, the plantation main water sources were from soil water, and about 50% of water originated from shallow and mid soil. This pattern might occur because main water sources in these plantations were changeable over time. The 20‐ and 40‐year‐old shrubs acquired water mainly from permanent groundwater. We conclude that the main water source of a young H. ammodendron plantation was soil water recharged by precipitation. However, when roots reached sufficient depth, water originated mainly from the deep soil water, especially in the dry season. The deeply rooted 20‐ and 40‐year‐old shrubs have the ability to exploit a deep and reliable water source. To achieve sustainability in these plantations, we recommend a reduction in the initial density of H. ammodendron in the desert‐oasis ecotone to decelerate the consumption of shallow soil water during plantation establishment.  相似文献   
956.
Street and garden trees in urban areas are often exposed to advection of strong vapour pressure deficit (VPD) air that can raise the whole‐tree transpiration rate (ET), known as the oasis effect. However, urban trees tend to have small soil volume compared with natural conditions, and so they are believed to strongly regulate stomata. ET characteristics of such urban trees have not been well understood because of a lack of reliable measurement methods. Therefore, we propose a novel weighing lysimeter method and investigate the whole‐tree water balance of an isolated container‐grown Zelkova serrata to examine (a) which biotic and abiotic factors determine ET and (b) which spatial and temporal information is needed to predict ET under urban conditions. Whole‐tree water balance and environmental conditions were measured from 2010 to 2012. Although leaf area substantially increased in the study period, daily ET did not vary much. ET increased with VPD almost linearly in 2010 but showed saturation in 2011 and 2012. Root water uptake lagged ET by 40 min in 2012. These results suggest that the small planter box interfered with root growth and that hydraulic supply capacities did not increase sufficiently to support leaf area increase. From analysis of water balance, we believe that neglecting soil drought effects on street trees without irrigation in Japan will overestimate ET over 4–5 sunny days at the longest. This is unlike previous studies of forest.  相似文献   
957.
Stemflow (Sf) measurements in tropical rain and montane forests dominated by large trees rarely include the understory and small trees. In this study, contributions of lower (1‐ to 2‐m height) and upper (>2‐m height and <5‐cm diameter at breast height [DBH]) woody understory, small trees (5 < DBH < 10 cm), and canopy trees (>10‐cm DBH) to Sf per unit ground area (Sfa) of a Mexican lower montane cloud forest were quantified for 32 days with rainfall (P) during the 2014 wet season. Rainfall, stemflow yield (Sfy), vegetation height, density, and basal area were measured. Subsequently, stemflow funneling ratios (SFRs) were calculated, and three common methods to scale up Sfy from individual trees to the stand level (tree‐Sfy correlation, P‐Sfy correlation, and mean‐Sfy extrapolation) were used to calculate Sfa. Understory woody plants, small trees, and upper canopy trees represented 96%, 2%, and 2%, respectively, of the total density. Upper canopy trees had the lowest SFRs (1.6 ± 0.5 Standard Error (SE) on average), although the lower understory had the highest (36.1 ± 6.4). Small trees and upper understory presented similar SFRs (22.9 ± 5.4 and 20.2 ± 3.9, respectively). Different Sf scaling methods generally yielded similar results. Overall Sfa during the study period was 22.7 mm (4.5% of rainfall), to which the understory contributed 70.1% (15.9 mm), small trees 10.6% (2.4 mm), and upper canopy trees 19.3% (4.4 mm). Our results strongly suggest that for humid tropical forests with dense understory of woody plants and small trees, Sf of these groups should be measured to avoid an underestimation of overall Sf at the stand level.  相似文献   
958.
Salinity has a major effect on water users in the Colorado River Basin, estimated to cause almost $300 million per year in economic damages. The Colorado River Basin Salinity Control Program implements and manages projects to reduce salinity loads, investing millions of dollars per year in irrigation upgrades, canal projects, and other mitigation strategies. To inform and improve mitigation efforts, there is a need to better understand sources of salinity to streams and how salinity has changed over time. This study explores salinity in the baseflow fraction of streamflow, assessing whether groundwater is a significant contributor of dissolved solids to streams in the Upper Colorado River Basin (UCRB). Chemical hydrograph separation was used to estimate baseflow discharge and baseflow dissolved solids loads at stream gages (n = 69) across the UCRB. On average, it is estimated that 89% of dissolved solids loads originate from the baseflow fraction of streamflow, indicating that subsurface transport processes play a dominant role in delivering dissolved solids to streams in the UCRB. A statistical trend analysis using weighted regressions on time, discharge, and season was used to evaluate changes in baseflow dissolved solids loads in streams (n = 27) from 1986 to 2011. Decreasing trends in baseflow dissolved solids loads were observed at 63% of streams. At the three most downstream sites, Green River at Green River, UT, Colorado River at Cisco, UT, and the San Juan River near Bluff, UT, baseflow dissolved solids loads decreased by a combined 823,000 metric tons (mT), which is approximately 69% of projected basin‐scale decreases in total dissolved solids loads as a result of salinity control efforts. Decreasing trends in baseflow dissolved solids loads suggest that salinity mitigation projects, landscape changes, and/or climate are reducing dissolved solids transported to streams through the subsurface. Notably, the pace and extent of decreases in baseflow dissolved solids loads declined during the most recent decade; average decreasing loads during the 2000s (28,200 mT) were only 54% of average decreasing loads in the 1990s (51,700 mT).  相似文献   
959.
Current methods to estimate snow accumulation and ablation at the plot and watershed levels can be improved as new technologies offer alternative approaches to more accurately monitor snow dynamics and their drivers. Here we conduct a meta‐analysis of snow and vegetation data collected in British Columbia to explore the relationships between a wide range of forest structure variables – obtained from Light Detection and Ranging (LiDAR), hemispherical photography (HP) and Landsat Thematic Mapper – and several indicators of snow accumulation and ablation estimated from manual snow surveys and ultrasonic range sensors. By merging and standardizing all the ground plot information available in the study area, we demonstrate how LiDAR‐derived forest cover above 0.5 m was the variable explaining the highest percentage of absolute peak snow water equivalent (SWE) (33%), while HP‐derived leaf area index and gap fraction (45° angle of view) were the best potential predictors of snow ablation rate (explaining 57% of variance). This study reveals how continuous SWE data from ultrasonic sensors are fundamental to obtain statistically significant relationships between snow indicators and structural metrics by increasing mean r2 by 20% when compared to manual surveys. The relationships between vegetation and spectral indices from Landsat and snow indicators, not explored before, were almost as high as those shown by LiDAR or HP and thus point towards a new line of research with important practical implications. While the use of different data sources from two snow seasons prevented us from developing models with predictive capacity, a large sample size helped to identify outliers that weakened the relationships and suggest improvements for future research. A concise overview of the limitations of this and previous studies is provided along with propositions to consistently improve experimental designs to take advantage of remote sensing technologies, and better represent spatial and temporal variations of snow. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
960.
The last decade has seen major technical and scientific improvements in the study of water transfer time through catchments. Nevertheless, it has been argued that most of these developments used conservative tracers that may disregard the oldest component of water transfer, which often has transit times greater than 5 years. Indeed, although the analytical reproducibility of tracers limits the detection of the older flow components associated with the most dampened seasonal fluctuations, this is very rarely taken into account in modelling applications. Tritium is the only environmental tracer at hand to investigate transfer times in the 5‐ to 50‐year range in surface waters, as dissolved gases are not suitable due to the degassing process. Water dating with tritium has often been difficult because of the complex history of its atmospheric concentration, but its current stabilization together with recent analytical improvements open promising perspectives. In this context, the innovative contribution of this study lies in the development of a generalized likelihood uncertainty estimation‐based approach for analysing the uncertainties associated with the modelling of transit time due to both parameter identification and tracer analytical precision issues. A coupled resampling procedure allows assessment of the statistical significance of the transfer time differences found in diverse waters. This approach was developed for tritium and the exponential‐piston model but can be implemented for virtually any tracer and model. Stream baseflow, spring and shallow aquifer waters from the Vallcebre research catchments, analysed for tritium in different years with different analytical precisions, were investigated by using this approach and taking into account other sources of uncertainty. The results showed three groups of waters of different mean transit times, with all the stream baseflow and spring waters older than the 5‐year threshold needing tritium. Low sensitivity of the results to the model structure was also demonstrated. Dual solutions were found for the waters sampled in 2013, but these results may be disambiguated when additional analyses will be made in a few years. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号