首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6069篇
  免费   1180篇
  国内免费   1069篇
测绘学   780篇
大气科学   1431篇
地球物理   873篇
地质学   2106篇
海洋学   1196篇
天文学   40篇
综合类   539篇
自然地理   1353篇
  2024年   50篇
  2023年   204篇
  2022年   277篇
  2021年   310篇
  2020年   246篇
  2019年   332篇
  2018年   209篇
  2017年   207篇
  2016年   231篇
  2015年   273篇
  2014年   444篇
  2013年   348篇
  2012年   397篇
  2011年   368篇
  2010年   346篇
  2009年   341篇
  2008年   382篇
  2007年   350篇
  2006年   284篇
  2005年   303篇
  2004年   251篇
  2003年   223篇
  2002年   247篇
  2001年   225篇
  2000年   143篇
  1999年   133篇
  1998年   130篇
  1997年   124篇
  1996年   147篇
  1995年   127篇
  1994年   116篇
  1993年   96篇
  1992年   107篇
  1991年   84篇
  1990年   107篇
  1989年   76篇
  1988年   20篇
  1987年   9篇
  1986年   9篇
  1985年   5篇
  1984年   7篇
  1983年   9篇
  1982年   4篇
  1981年   3篇
  1977年   2篇
  1950年   1篇
  1948年   1篇
  1942年   1篇
  1941年   1篇
  1938年   1篇
排序方式: 共有8318条查询结果,搜索用时 15 毫秒
11.
青藏高原高寒草地植被覆盖度变化及其环境影响因子研究   总被引:1,自引:0,他引:1  
陈建军 《测绘学报》2020,49(4):533-533
青藏高原作为长江、黄河、雅鲁藏布江和恒河等河流的发源地与水源供给地,对中国及周边国家和地区的经济发展、生态平衡有着重要的社会、经济和生态意义。青藏高原在过去几十年里经历了显著的气候变暖,且增温幅度明显高于同纬度其他地区。气候变暖必然导致该地区的多年冻土与生态系统发生显著变化,进而对当地的生态环境、水文过程产生较大影响。为了更深入地认识青藏高原高寒草地的变化过程及其环境影响因子,本研究以野外实测数据、遥感数据、冻土分布数据、土壤水热以及气温降水资料为基础,分析了青藏高原高寒草地植被覆盖度变化的空间分布特征,并进一步探讨了环境因子在其变化过程中的作用,绘制了青藏高原高寒草地植被生长限制因子的空间分布图。  相似文献   
12.
黄土沟谷是黄土地貌中最有活力、最具变化、最富特色的对象单元,黄土高原千沟万壑的地貌形态以及触目惊心的侵蚀状态也让区域内沟谷地貌的形成、发育及演化问题成为研究中焦点及前沿性科学问题。近年来,诸多学者采用地学测年法、特征表达法、监测模拟法力图实现对黄土沟谷发育演化进程中“过去-现代-未来”的科学认知。这些研究在相当程度上丰富了黄土沟谷发育过程的认知。本文梳理了黄土高原沟谷地貌演化相关研究的现状,并从黄土高原地貌演化、黄土沟谷发育、基于DEM的沟谷信息提取与表达等研究进行了系统的回顾、梳理与分析。此外,本文提出“黄土沟道剖面群组”概念与方法,试图从新的视角审视黄土沟谷地貌发育演化过程。沟道剖面在黄土沟谷发育演化进程中传递物质能量和累积地形动力,并通过径流节点的串联实现剖面群的连接与组合,形成独特的剖面“群组”模式;该沟道剖面群组是集黄土沟谷地貌特征与过程于一体的综合信息集成体,其三维空间结构是对黄土沟谷地貌发育演化的高度抽象与映射,并可望进一步丰富黄土高原数字地形分析理论与方法体系,为黄土高原黄土地貌成因机理与空间分异格局带来创新的认识。  相似文献   
13.
14.
泥石流是一种多发的地质灾害,常对人民生命财产安全带来极大的威胁,其暴发不仅与降雨有关,还与众多地质环境因子相关。本文以流域面积、松散物质比率、沟床平均坡度为地质因子,以最大小时雨强(T)和总降雨量(R)的乘积作为降雨指数,在获取的泥石流地质因子和降雨指数因子综合样本库的基础上,采用遗传规划法建立了泥石流临界降雨指数智能预测模型,克服了以往以雨量为单一指标的预警模型的弊端,模型验证结果显示,泥石流预测精度高、适应性强。  相似文献   
15.
温爱新  李宁宁 《地下水》2020,(1):277-278,282
为保证水利工程的长久、安全运行有必要科学、全面的评价监理质量控制与管理效果,并且逐渐成为工程建设的重要内容。通过分析控制点控制偏差、累计平均偏差及标准差控制模型,采用层次分析法深入研究了监理质量控制与管理评估体系及其功能作用。研究表明,监理质量管理与控制评估体系可为进一步促进水利工程监理工作更快、更好的发展提供科学依据,可在一定程度上提升工程监理的准确性和监理水平。  相似文献   
16.
鳗草(Zostera marina)作为适应在海洋环境中生长和繁殖的多年生被子植物,是研究海洋高等植物分子进化的理想物种。热激转录因子(HSF)在植物细胞的修复、蛋白的转录修饰以及信号转导中具有重要的作用。为全面了解鳗草基因组中HSF基因家族信息,本文采用生物信息学手段,在鳗草基因组中鉴定了11个ZmHSFs基因,基因长度差异较大,但均不含有内含子。系统发育结果显示11个基因分为HSFA和HSFB两大分支。顺式作用元件分析表明ZmHSFs基因很可能同时受到温度和光照等多种非生物因素的调节。此外,鳗草HSF基因家族数目明显小于其他高等植物,二次入海过程可能导致部分ZmHSFs基因丢失。转录组数据表明HSF基因在3种不同器官中均有表达,且存在一定的器官表达差异。  相似文献   
17.
成都、重庆作为中国西南地区快速发展的城市,是雾霾频发的区域,研究其雾霾因子联系以及区域空间分布特征及其规律,对于城市发展、创建绿色城市具有重要意义。通过分析2016年12月~2017年2月的PM2.5等污染物浓度数据可知:①成渝地区雾霾产生的高峰期在1月,并以成都、重庆为中心向四周减弱;②在时间分布上,成都和重庆的雾霾污染物浓度呈协同变化趋势,说明两地雾霾在区域上相互影响,协同作用;③在气象因素中,两地的湿度和风速对雾霾集聚、转移和扩散具有重要作用;④两地的位置和地形特征是其雾霾具有相关性的重要因素,因此只有两地同时防治雾霾,才能达到最好的效果。根据不同地域特征,积极改进生产结构,采取相应措施,才是治理雾霾的根本所在。  相似文献   
18.
19.
【目的】克隆马氏珠母贝(Pinctada martensii)肿瘤坏死因子受体相关死亡域蛋白(TRADD)基因,并分析其在各组织中的表达。【方法】利用cDNA末端快速扩增技术(RACE)克隆获得马氏珠母贝PmTRADD基因的c DNA全长序列,利用实时荧光定量PCR(qPCR)方法分析PmTRADD基因在马氏珠母贝不同组织中的表达模式。【结果与结论】PmTRADD包含5′非编码区101 bp,3′非编码区144 bp和开放阅读框(ORF)591 bp,编码196个氨基酸。序列分析表明,PmTRADD没有信号肽和跨膜结构域,C端含有一个死亡结构域(DEATH)。将PmTRADD死亡结构域的氨基酸序列与其他物种的TRADD死亡结构域序列进行比对,发现不同物种的TRADD死亡结构域序列同源性较低。PmTRADD在马氏珠母贝各组织中均有不同程度表达,在鳃组织中表达最高,肝胰腺次之,闭壳肌中基本无表达。  相似文献   
20.
岩溶区土地石漠化已成为中国西部继沙漠化和水土流失后的第三大生态问题,近年来岩溶槽谷区石漠化表现出增加趋势。通过获取槽谷区石漠化、岩性、坡度、海拔、降雨量、土地利用、人口密度和第一产业生产总值等数据,利用GIS空间分析功能和地理探测器模型,探讨了岩溶槽谷区石漠化空间分布特征及驱动因子。主要结论为:① 岩溶槽谷区总石漠化面积为21323.7 km 2,占研究区土地面积的8.3%,其中轻度、中度和重度石漠化面积分别是11894.8 km 2、8615.8 km 2和813.1 km 2,分别占石漠化面积的55.8%、40.4%和3.8%;② 从石漠化的空间分布来看,槽谷区石漠化主要发生在连续性灰岩中,轻度、中度和重度石漠化面积分别为占槽谷区相应石漠化类型面积的22.1%、22.4%和1.9%;槽谷区石漠化主要发生在15°~25°的坡度范围,轻度、中度和重度石漠化面积分别为占槽谷区相应石漠化类型面积的27.1%、18.2%和2.3%;从海拔来看,主要分布于400~800 m范围内,轻度、中度和重度石漠化面积分别为占槽谷区相应石漠化类型面积的24.9%、18.4%和0.2%;从土地利用类型来看,主要发生于山地旱地中;从人口密度来看,集中分布于100~200人/km 2中;从第一产业生产总值来看,集中分布于25亿~50亿元中;③ 地理探测器的因子探测器揭示了岩性(q = 0.58)、土地利用(q = 0.48)和坡度(q = 0.42)3个因子是槽谷区石漠化形成的主要驱动因子,交互式探测器进一步揭示了岩性与土地利用类型(q = 0.85)、坡度与土地利用类型的组合(q = 0.75)共同驱动槽谷区石漠化的形成。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号