首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   99篇
  免费   13篇
  国内免费   5篇
大气科学   8篇
地球物理   36篇
地质学   54篇
海洋学   12篇
天文学   5篇
自然地理   2篇
  2023年   2篇
  2021年   6篇
  2020年   4篇
  2019年   2篇
  2018年   3篇
  2017年   2篇
  2016年   11篇
  2015年   4篇
  2014年   7篇
  2013年   14篇
  2012年   5篇
  2011年   6篇
  2010年   10篇
  2009年   9篇
  2008年   9篇
  2007年   4篇
  2006年   2篇
  2005年   7篇
  2004年   1篇
  2003年   1篇
  2002年   2篇
  2001年   2篇
  2000年   1篇
  1999年   1篇
  1997年   2篇
排序方式: 共有117条查询结果,搜索用时 15 毫秒
101.
Performance observation is a necessary part of the design and construction process in geotechnical engineering. For deep urban excavations, empirical and numerical methods are used to predict potential deformations and their impacts on surrounding structures. Two inverse analysis approaches are described and compared for an excavation project in downtown Chicago. The first approach is a parameter optimization approach based on genetic algorithm (GA). GA is a stochastic global search technique for optimizing an objective function with linear or non-linear constraints. The second approach, self-learning simulations (SelfSim), is an inverse analysis technique that combines finite element method, continuously evolving material models, and field measurements. The optimization based on genetic algorithm approach identifies material properties of an existing soil model, and SelfSim approach extracts the underlying soil behavior unconstrained by a specific assumption on soil constitutive behavior. The two inverse analysis approaches capture well lateral wall deflections and maximum surface settlements. The GA optimization approach tends to overpredict surface settlements at some distance from the excavation as it is constrained by a specific form of the material constitutive model (i.e. hardening soil model); while the surface settlements computed using SelfSim approach match the observed ones due to its ability to learn small strain non-linearity of soil implied in the measured settlements.  相似文献   
102.
In the context of a research and development program on waste disposal, an experimental site (Tournemire tunnel, Aveyron, France) was selected by the French Institute for Nuclear Protection and Safety (IPSN) in order to undertake studies on potential fluid flow at different scales of space and time within a 250-m-thick argillaceous formation. The argillite has a low natural water content (~3–5%) and very low radii access porosity. Diffusion (tritiated water) coefficients (1×10–12 to 2×10–11 m2/s) and hydraulic conductivities derived from different types of laboratory tests (10–14 to 10–13 m/s) are characteristics of a very low-permeable rock. In situ hydraulic tests (including long-term hydraulic-head measurements) were used to obtain values for hydraulic head and hydraulic conductivity at a scale of 1–10 m (10–13 to 10–11 m/s). Despite uncertainties on these data (due to a scale factor, presence of fissures, and possible artefacts due to hydro-chemo-mechanical coupling), it is expected that fluid flow is essentially governed by diffusion processes. Identification of possible natural flows at larger scales of time and space was investigated using natural isotopic tracers from interstitial fluids. Modelling, based on the deuterium profile along the clay formation and assuming pure diffusion processes, provides estimations of possible flow times. However, lack of knowledge concerning the past geological evolution of the site and the possible role of a fracture network do not permit reduction of uncertainties on these estimations at this stage. Electronic Publication  相似文献   
103.
The Gold Coast sandy beaches of Queensland (Australia) are exposed to energetic wave conditions. Storms, particularly tropical cyclones, have a high potential of destruction. The Gold Coast has not experienced excessive erosive events over the past 30 years. However, some climate indicators suggest that cyclone frequency is likely to increase in response to global climate change within the near future. Over a 2-month period in early 2006, beach surveys were undertaken with a theodolite total station at four different sites. Offshore wave conditions were provided by SWAN regional wave modelling. During this study, the Gold Coast was exposed to three major storms, the first one being the second most energetic over the past 30 years. Results show a substantial variability of the beach response to these events along the Gold Coast, and that engineering structures do not have marked effects. Easterly swells have the greatest impact on the Gold Coast sub-aerial beach morphology. When low wave-energy conditions prevail, the southern Gold Coast beaches recover more quickly than the northern ones, as they are sheltered from high SE waves and draw advantage from the artificial sand bypassing system. Nevertheless, the data show that the Gold Coast beaches are exceedingly fragile. For instance, the early March decadal event considerably weakened the beaches, which resulted in surprisingly high erosion rates all along the Gold Coast during the two following annual wave events. This study suggests that the Gold Coast beaches would not be able to withstand the impact of an increased frequency of extreme events similar in scale to those of 1967.  相似文献   
104.
The south-eastern part of the European Variscan belt forms a zone composed of several crystalline segments: the External Crystalline Massifs of the western Alps, the Maures-Tanneron massif, also Corsica and Sardinia, which are mutually displaced due to the Alpine deformation of the European Paleozoic lithosphere. All these crystalline fragments record similar structural, metamorphic, geochronological and magmatic histories during Paleozoic times. In particular, the Late Carboniferous period (~320–300 Ma) is characterized by crustal-scale folding associated with strike-slip faulting and intracontinental basin formation. In this transpressive context, dome structures exhume partially-molten crust in convergent setting, which is in contradiction with generally accepted models of late orogenic collapse of the Variscan belt. It is suggested that this particular transpressive–obliquely convergent template, exemplified by tectonometamorphic evolution of the Maures-Tanneron massif, is valid for the whole eastern European Variscan margin.  相似文献   
105.
赵延娜  段永红  周铭  魏运浩 《地质论评》2019,65(Z1):283-284
正华南大陆东部地区地处欧亚板块和太平洋板块的交汇区域,长期受到印度洋板块、太平洋板块和菲律宾海板块的俯冲影响,是欧亚大陆东部边缘构造框架极其重要的一部分,也是研究板块相互作用的天然实验室。已有的大尺度全国地震体波和面波成像结果可以很好的分辨出主要的盆地和块体分布,但体波成像的射线在地壳和上地幔顶部覆盖  相似文献   
106.
利用国家气候中心提供的1951—2012年逐日降水、温度、综合气象干旱指数、逐月NCEP/NCAR再分析资料等,采用REOF分析、动力诊断、相关分析以及合成分析等方法,从大气环流异常特征、高空急流与季风异常等方面揭示西北东部夏季极端干旱事件的可能机理。研究发现西北东部夏季发生极端干旱时,副热带急流轴"倾斜",且急流与东亚夏季风强度均处于相对偏弱阶段。极端干旱的成因研究表明:急流轴"倾斜"及其强度减弱导致西北东部地区高层大范围的异常辐合;该地区为水汽源区,对流层整层水汽收支显著亏损;此外,该地区低层盛行来自内陆干旱区的异常西南风,东亚夏季风强度偏弱,高低层配置及大尺度环流形势不利于降水产生。  相似文献   
107.
The mechanisms driving the air–sea exchange of carbon dioxide (CO2) in the North Sea are investigated using the three-dimensional coupled physical–biogeochemical model ECOHAM (ECOlogical-model, HAMburg). We validate our simulations using field data for the years 2001–2002 and identify the controls of the air–sea CO2 flux for two locations representative for the North Sea's biogeochemical provinces. In the seasonally stratified northern region, net CO2 uptake is high () due to high net community production (NCP) in the surface water. Overflow production releasing semi-labile dissolved organic carbon needs to be considered for a realistic simulation of the low dissolved inorganic carbon (DIC) concentrations observed during summer. This biologically driven carbon drawdown outcompetes the temperature-driven rise in CO2 partial pressure (pCO2) during the productive season. In contrast, the permanently mixed southern region is a weak net CO2 source (). NCP is generally low except for the spring bloom because remineralization parallels primary production. Here, the pCO2 appears to be controlled by temperature.  相似文献   
108.
Herbaceous vegetation in the Sahel grows almost exclusively on sandy soils which preferentially retain water through infiltration and storage. The hydrological functioning of these sandy soils during rain cycles is unknown. One way to tackle this issue is to spatialize variations in water content but these are difficult to measure in the vadose zone. We investigated the use of Electrical Resistivity Tomography (ERT) as a technique for spatializing resistivity in a non-destructive manner in order to improve our knowledge of relevant hydrological processes. To achieve this, two approaches were examined. First, we focused on a possible link between water tension (which is much easier to measure in the field by point measurements than water content), and resistivity (spatialized with ERT). Second, because ERT is affected by solution non-uniqueness and reconstruction smoothing, we improved the accuracy of ERT inversion by comparing calculated solutions with in-situ resistivity measurements. We studied a natural microdune during a controlled field experiment with artificial sprinkling which reproduced typical rainfall cycles. We recorded temperature, water tension and resistivity within the microdune and applied surface ERT before and after the 3 rainfall cycles. Soil samples were collected after the experiment to determine soil physical characteristics. An experimental relationship between water tension and water content was also investigated. Our results showed that the raw relationship between calculated ERT resistivity and water tension measurements in sand is highly scattered because of significant spatial variations in porosity. An improved correlation was achieved by using resistivity ratio and water tension differences. The slope of the relationship depends on the soil solution conductivity, as predicted by Archie's law when salted water was used for the rain simulation. We found that determining the variations in electrical resistivity is a sensitive method for spatializing the differences in water tension which are directly linked with infiltration and evaporation/drainage processes in the vadose zone. However, three factors complicate the use of this approach. Firstly, the relation between water tension and water content is generally non-linear and dependent on the water content range. This could limit the use of our site-specific relations for spatializing water content with ERT through tension. Secondly, to achieve the necessary optimization of ERT inversion, we used destructive resistivity measurements in the soil, which renders ERT less attractive. Thirdly, we found that the calculated resistivity is not always accurate because of the smoothing involved in surface ERT data inversion. We conclude that further developments are needed into ERT image reconstruction before water tension (and water content) can be spatialized in heterogeneous sandy soils with the accuracy needed to routinely study their hydrological functioning.  相似文献   
109.
Scheelite is a widespread accessory mineral in hydrothermal gold deposits, and its rare earth element (REE) patterns and Nd and Sr isotopic compositions can be used to constrain the path and origin of the mineralising fluids and the age of the hydrothermal activity. Micro-analyses by laser ablation high resolution inductively coupled mass spectroscopy and cathodoluminescence imaging reveal a very inhomogeneous distribution of the REE in single scheelite grains from the Mt. Charlotte and Drysdale Archaean gold deposits in Western Australia. Two end-member REE patterns are distinguished: type I is middle REE (MREE)-enriched, with no or minor positive Eu-anomaly, whereas type II is flat or MREE-depleted with a strong positive Eu-anomaly. The chemical inhomogeneity of these scheelites is related to oscillatory zoning involving type I and type II patterns, with zone widths varying from below 1 to 200 μm. Intra-sectorial growth discontinuities, syn-crystallisation brittle deformation, and variations in the relative growth velocities of crystallographically equivalent faces suggest a complex crystallisation history under dynamic hydraulic conditions. The co-existence of MREE-enriched and MREE-depleted patterns within single scheelite crystals can be explained by the precipitation of a mineral which strongly partitions MREE relative to light and heavy REE. Scheelite itself has such characteristics, as does fluorapatite, which is locally abundant and has REE contents similar to that of scheelite. In this context, the systematic increase of the Eu-anomaly between type I and type II patterns is produced by the difference between the partition coefficients of Eu2+ and Eu3+, and not by fluid mixing or redox reactions. Consequently, the high positive Eu-anomaly typical of scheelite from gold ores may not necessarily be inherited from the hydrothermal fluid, but may reflect processes occurring during ore deposition. This case study demonstrates that in hydrothermal systems characterised by low REE concentrations in the fluid, and by the precipitation of a REE-rich mineral which strongly fractionates the REE, the REE patterns of such a mineral will be highly sensitive to the dynamics of the hydrothermal system. Received: 1 November 1999 / Accepted: 4 February 2000  相似文献   
110.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号