首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   99篇
  免费   13篇
  国内免费   5篇
大气科学   8篇
地球物理   36篇
地质学   54篇
海洋学   12篇
天文学   5篇
自然地理   2篇
  2023年   2篇
  2021年   6篇
  2020年   4篇
  2019年   2篇
  2018年   3篇
  2017年   2篇
  2016年   11篇
  2015年   4篇
  2014年   7篇
  2013年   14篇
  2012年   5篇
  2011年   6篇
  2010年   10篇
  2009年   9篇
  2008年   9篇
  2007年   4篇
  2006年   2篇
  2005年   7篇
  2004年   1篇
  2003年   1篇
  2002年   2篇
  2001年   2篇
  2000年   1篇
  1999年   1篇
  1997年   2篇
排序方式: 共有117条查询结果,搜索用时 221 毫秒
111.
The Northern Mediterranean Current is the return branch of the cyclonic circulation of the northwestern Mediterranean Sea. Because of geostrophic constraints, this warm and oligotrophic current is forced to flow westward along the continental slope of the Gulf of Lion. But, occasionally, it penetrates on the shelf and strongly impacts the local biogeochemistry and in turn the primary production. By combining in situ observations and high-resolution modelling, it is shown that intrusions on the eastern part of the gulf are mainly forced by easterly or northwesterly wind events, through physical mechanisms that are very different in nature. Easterlies induce a piling of water along the Gulf of Lion coast that drives, through geostrophy, an alongshore shelf-intruding current. This intrusive current occurs independently of the stratification and is concomitant with the wind forcing. On the other hand, intrusions due to northwesterlies only occur during stratified conditions and are related to the development of upwellings along the Gulf of Lion coasts. When the upwelling develops, a northwestward alongshore pressure force balances the Coriolis force associated with the onshore flow at depth. When the winds drop, the upwelling relaxes and the onshore flow weakens. Consequently, the Coriolis force no longer counterbalances the pressure force that ultimately dominates the momentum balance, causing the displacement of the Northern Current on the Gulf of Lion shelf approximately 1 day after the wind relaxation. This time lag between the northwesterlies decrease and the intrusions permits to anticipate possible changes in the biogeochemistry of the Gulf of Lion.  相似文献   
112.
As the boundary between the northern edge of the Tibetan plateau and the Tarim Basin, the active left-lateral strike-slip Altyn Tagh Fault (ATF) is a first-order structure accommodating the ongoing continental collision between India and Asia and extends from northwestern Tibet to eastern Gansu Province with a whole length of ~1 600km. It is regarded as one of the most active fault in Euro-Asia block and has been segmented eleven rupture segments. This study utilizes the high-resolution image data (Google Earth) in combination with detailed field investigation on the Aksay segment of the ATF to scan the gully offset by Trimble VX, which suggests that the latest earthquake offset is 6~7m. Through trenching and radiocarbon dating of charcoal samples, paleoseismic events of this segment are analyzed. The trench has revealed many different deformed and dislocated strata, which display four paleoseismic events. Combined with the previous research and using the progressive constraining method, we constrained the paleoseismic events in this segment, and the results suggest that the penultimate and the most recent event occurred~1180a BP and 507~230a BP, respectively.  相似文献   
113.
The 3-d coupled physical–biogeochemical model ECOHAM (version 3) was applied to the Northwest-European Shelf (47°41′–63°53′N, 15°5′W–13°55′E) for the years 1993–1996. Carbon fluxes were calculated for the years 1995 and 1996 for the inner shelf region, the North Sea (511,725 km2). This period was chosen because it corresponds to a shift from a very high winter-time North Atlantic Oscillation Index (NAOI) in 1994/1995, to an extremely low one in 1995/1996, with consequences for the North Sea physics and biogeochemistry. During the first half of 1996, the observed mean SST was about 1 °C lower than in 1995; in the southern part of the North Sea the difference was even larger (up to 3 °C). Due to a different wind regime, the normally prevailing anti-clockwise circulation, as found in winter 1995, was replaced by more complicated circulation patterns in winter 1996. Decreased precipitation over the drainage area of the continental rivers led to a reduction in the total (inorganic and organic) riverine carbon load to the North Sea from 476 Gmol C yr−1 in 1995 to 340 Gmol C yr−1 in 1996. In addition, the North Sea took up 503 Gmol C yr−1 of CO2 from the atmosphere. According to our calculations, the North Sea was a sink for atmospheric CO2, at a rate of 0.98 mol C m−2 yr−1, for both years. The North Sea is divided into two sub-systems: the shallow southern North Sea (SNS; 190,765 km2) and the deeper northern North Sea (NNS; 320,960 km2). According to our findings the SNS is a net-autotrophic system (net ecosystem production NEP>0) but released CO2 to the atmosphere: 159 Gmol C yr−1 in 1995 and 59 Gmol C yr−1 in 1996. There, the temperature-driven release of CO2 outcompetes the biological CO2 drawdown. In the NNS, where respiratory processes prevail (NEP<0), 662 and 562 Gmol C yr−1 were taken up from the atmosphere in 1995 and 1996, respectively. Stratification separates the productive, upper layer from the deeper layers of the water column where respiration/remineralization takes place. Duration and stability of the stratification are determined by the meteorological conditions, in relation to the NAO. Our results suggest that this mechanism controlling the nutrient supply to the upper layer in the northern and central North Sea has a larger impact on the carbon fluxes than changes in lateral transport due to NAOI variations. The North Sea as a whole imports organic carbon and exports inorganic carbon across the outer boundaries, and was found to be net-heterotrophic, more markedly in 1996 than in 1995.  相似文献   
114.
We use the clathrate hydrate trapping theory and gas drag formalism to calculate the composition of ices incorporated in the interior of Ceres. Utilizing a time-dependent solar nebula model, we show that icy solids can drift from beyond 5 au to the present location of the asteroid and be preserved from vaporization. We argue that volatiles were trapped in the outer solar nebula in the form of clathrate hydrates, hydrates and pure condensates prior to having been incorporated in icy solids and subsequently in Ceres. Under the assumption that most of volatiles were not vaporized during the accretion phase and the thermal evolution of Ceres, we determine the per mass abundances with respect to H2O of CO2, CO, CH4, N2, NH3, Ar, Xe and Kr in the interior of the asteroid. The Dawn space mission, scheduled to explore Ceres in August 2014, may have the capacity to test some predictions. We also show that an in situ measurement of the D/H ratio in H2O in Ceres could constrain the distance range in the solar nebula where its icy planetesimals were produced.  相似文献   
115.
Eleven synthetic silicate and phosphate glasses were prepared to serve as reference materials for in situ microanalysis of clinopyroxenes, apatite and titanite, and other phosphate and titanite phases. Analytical results using different micro-analytical techniques showed that the glass fragments were homogeneous in major and trace elements down to the micrometre scale. Trace element determinations using inductively coupled plasma-mass spectrometry (ICP-MS), multi-collector inductively coupled plasma-mass spectrometry (MC-ICP-MS), laser-ablation inductively coupled plasma-mass spectrometry (LA-ICP-MS) and secondary ionisation mass spectrometry (SIMS) showed good agreement for most elements (Li, Be, B, Cs, Rb, Ba, Sr, Ga, Pb, U, Th, Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Er, Tm, Yb, Lu, Zr, Hf, Ta, Nb) studied and provide provisional recommended values.  相似文献   
116.
We studied sediment cores from Lake Vens (2,327 m asl), in the Tinée Valley of the SW Alps, to test the paleoseismic archive potential of the lake sediments in this particularly earthquake-sensitive area. The historical earthquake catalogue shows that moderate to strong earthquakes, with intensities of IX–X, have impacted the Southern Alps during the last millennium. Sedimentological (X-ray images, grain size distribution) and geochemical (major elements and organic matter) analyses show that Lake Vens sediments consist of a terrigenous, silty material (minerals and organic matter) sourced from the watershed and diatom frustules. A combination of X-ray images, grain-size distribution, major elements and magnetic properties shows the presence of six homogenite-type deposits interbedded in the sedimentary background. These sedimentological features are ascribed to sediment reworking and grain sorting caused by earthquake-generated seiches. The presence of microfaults that cross-cut the sediment supports the hypothesis of seismic deposits in this system. A preliminary sediment chronology is provided by 210Pb measurement and AMS 14C ages. According to the chronology, the most recent homogenite events are attributable to damaging historic earthquakes in AD 1887 (Ligure) and 1564 (Roquebillière). Hence, the Lake Vens sediment recorded large-magnitude earthquakes in the region and permits a preliminary estimate of recurrence time for such events of ~400 years.  相似文献   
117.
The IPSL-CM5A climate model was used to perform a large number of control, historical and climate change simulations in the frame of CMIP5. The refined horizontal and vertical grid of the atmospheric component, LMDZ, constitutes a major difference compared to the previous IPSL-CM4 version used for CMIP3. From imposed-SST (Sea Surface Temperature) and coupled numerical experiments, we systematically analyze the impact of the horizontal and vertical grid resolution on the simulated climate. The refinement of the horizontal grid results in a systematic reduction of major biases in the mean tropospheric structures and SST. The mid-latitude jets, located too close to the equator with the coarsest grids, move poleward. This robust feature, is accompanied by a drying at mid-latitudes and a reduction of cold biases in mid-latitudes relative to the equator. The model was also extended to the stratosphere by increasing the number of layers on the vertical from 19 to 39 (15 in the stratosphere) and adding relevant parameterizations. The 39-layer version captures the dominant modes of the stratospheric variability and exhibits stratospheric sudden warmings. Changing either the vertical or horizontal resolution modifies the global energy balance in imposed-SST simulations by typically several W/m2 which translates in the coupled atmosphere-ocean simulations into a different global-mean SST. The sensitivity is of about 1.2 K per 1 W/m2 when varying the horizontal grid. A re-tuning of model parameters was thus required to restore this energy balance in the imposed-SST simulations and reduce the biases in the simulated mean surface temperature and, to some extent, latitudinal SST variations in the coupled experiments for the modern climate. The tuning hardly compensates, however, for robust biases of the coupled model. Despite the wide range of grid configurations explored and their significant impact on the present-day climate, the climate sensitivity remains essentially unchanged.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号