首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   99篇
  免费   13篇
  国内免费   5篇
大气科学   8篇
地球物理   36篇
地质学   54篇
海洋学   12篇
天文学   5篇
自然地理   2篇
  2023年   2篇
  2021年   6篇
  2020年   4篇
  2019年   2篇
  2018年   3篇
  2017年   2篇
  2016年   11篇
  2015年   4篇
  2014年   7篇
  2013年   14篇
  2012年   5篇
  2011年   6篇
  2010年   10篇
  2009年   9篇
  2008年   9篇
  2007年   4篇
  2006年   2篇
  2005年   7篇
  2004年   1篇
  2003年   1篇
  2002年   2篇
  2001年   2篇
  2000年   1篇
  1999年   1篇
  1997年   2篇
排序方式: 共有117条查询结果,搜索用时 15 毫秒
31.
Glass inclusions in clinopyroxene phenocrysts from La Sommata (Vulcano Island, Aeolian Arc) were reheated and submitted to a sustained thermal gradient. Each remelted inclusion undergoes a transient textural and chemical reequilibration and concomitantly begins to migrate along a crystallographic direction, at a small angle with the thermal gradient. The completion of morphological evolution requires a characteristic time that is governed by chemical diffusion. Chemical reequilibration results in the formation of a colored halo that delineates the former location and shape of the inclusion after it has migrated away. Transcrystalline migration proceeds by dissolution of the host clinopyroxene ahead and precipitation astern. Its rate is not limited by Fick’s law, but by the crystal-melt interface kinetics. Clinopyroxene dissolution and growth are slower than for olivine in similar conditions but obey the same analytical law, which can be transposed to equally or more sluggish melting or crystallization events in nature. When a gas bubble is initially present, it responds to elastic forces by quickly shifting toward the cold end of the inclusion, where it soon becomes engulfed as an isolated fluid inclusion in the reprecipitated crystal. This study confirms that transcrystalline melt migration, beside its possible implications for small-scale melt segregation and fluid-inclusion generation in the Earth’s mantle, provides an experimental access to interfacial kinetic laws in near-equilibrium conditions.  相似文献   
32.
Subsurface temperatures in rocks naturally fluctuate under the influence of local meteorological conditions. These fluctuations play a role in mechanical weathering, thus creating the environmental conditions conducive to natural hazards such as rockfalls and providing important sediment source terms for landscape evolution. However, the physics that control heat penetration into rocks are not fully understood, which makes the underground thermal state difficult to interpret when temperature measurements are available and even more difficult to estimate for unmonitored sites. This is an important lacuna given possible impacts of future climate change on mechanical weathering processes. The natural daily variations of subsurface temperatures were investigated on a bare gneiss outcrop exposed to solar radiation, where temperatures at various depths (up to 50 cm), as well as the solar radiation reaching a pyranometer, were monitored hourly for several months. This detailed times series of thermal data was used to gain insight into the heat balance at the inclined free surface of the rock mass. Attention was focused on two major contributors to the heat balance; the heat flux entering the rock mass through conduction and the incoming shortwave (solar) radiation. A Fourier decomposition of the temperature measurements provided an estimate of the in situ thermal conductivity of the rock and was used to calculate the conductive term. The shortwave radiation term was determined on the basis of the pyranometer measurements adjusted to account for the angle of incidence of the sun. It is shown that, throughout clear‐sky periods, heat exchanges at the surface are mainly controlled by direct solar radiation during the day, and by a roughly constant outgoing heat flux during the night. Subsurface temperatures can be reliably estimated with a semi‐infinite medium model whose boundary condition is derived from an analytical insolation model that takes atmospheric attenuation into account. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
33.
Climate Dynamics - North Africa experienced a severe heatwave in April 2010 with daily maximum temperatures ( $$T_{max}$$ ) frequently exceeding $$40\,^{\circ }\mathrm{C}$$ and daily minimum...  相似文献   
34.
Clast 100 in regolith breccia 15295 could be a key to resolving the relationship(s) between mare basalts and lunar picritic glasses. The clast is basaltic, with texture, mineralogy, mineral compositions, and calculated bulk composition suggesting that it crystallized in a thick lava flow or shallow intrusive body from a very‐low‐titanium (VLT) basaltic magma. The estimated bulk composition of clast 15295,100 is primitive (i.e., magnesian) compared to those of known VLT basalts, and is very close to those of VLT picritic green glasses, especially the Apollo 14 A green glass. From these similarities, we infer that clast 15295,100 is a crystalline product of a picritic magma similar to the Apollo 14 A glass. Clementine and M3 remotely sensed data of the lunar surface were used to find areas that have chemical compositions consistent with those of clast 15295,100, not only near the Apollo 15 site, but in a broad region surrounding the site. Two regions are consistent with clast's 15295,100 compositional data. The larger region is in southern Mare Imbrium, and a smaller region is in the eastern half of Sinus Aestuum. These locations should be considered as candidates for future missions focusing on sample science.  相似文献   
35.
Law-Chune  Stéphane  Aouf  Lotfi  Dalphinet  Alice  Levier  Bruno  Drillet  Yann  Drevillon  Marie 《Ocean Dynamics》2021,71(3):357-378
Ocean Dynamics - As part of the Copernicus Marine Service, WAVERYS is the multi-year wave reanalysis that provides global wave data with a fine grid resolution of 1/5°. This wave reanalysis...  相似文献   
36.
The Northern Current (hereafter NC), the major current in the North-Western Mediterranean (hereafter NWM) basin, has been largely investigated in the litterature for its mesoscale features. Its behaviour in the Var region can strongly condition the downstream flow along the Gulf of Lions shelf and Spain coast, making this zone a key area. However, the sub-mesoscale dynamics of the area and its potential impacts on the rest of the flow are not well known. This work reveals the potential interest of better simulating high-resolution dynamics in a restricted area and how this could improve the circulation representation in a larger area. To address this question, a very high resolution configuration (1/192°) nested in an already existing high-resolution configuration (1/64°) has been developed, using the NEMO model. Comparisons with observations show that the very high-resolution changes only weakly the mean NC characteristics but can significantly modify individual mesoscale events such as eddies and meanders occurring in the zoomed area. Furthermore, the coastal dynamics and episodic intrusions of a NC secondary branch inside a semi-enclosed bay appear to be significantly enhanced. In a second stage, the assessment of the feedback of this improved dynamics on the regional mesoscale dynamics is shown, this being allowed by the two-way coupling option of the embedded configuration using AGRIF.  相似文献   
37.
基于四川区域地震台网记录的波形资料,利用CAP波形反演方法,同时获取了2013年4月20日芦山M7.0级地震序列中88个M≥3.0级地震的震源机制解、震源矩心深度与矩震级,进而利用应变花(strain rosette)和面应变(areal strain)As值,分析了芦山地震序列震源机制和震源区构造运动与变形特征.获得的主要结果有:(1)芦山M7.0级主震破裂面参数为走向219°/倾角43°/滑动角101°,矩震级为MW6.55,震源矩心深度15 km.芦山地震余震区沿龙门山断裂带走向长约37 km、垂直断裂带走向宽约16 km.主震两侧余震呈不对称分布,主震南西侧余震区长约27 km、北东侧长约10 km.余震分布在7~22 km深度区间,优势分布深度为9~14 km,序列平均深度约13 km,多数余震分布在主震上部.粗略估计的芦山地震震源体体积为37 km×16 km×16 km.(2)面应变As值统计显示,芦山地震序列以逆冲型地震占绝对优势,所占比例超过93%.序列主要受倾向NW、倾角约45°的近NE-SW向逆冲断层控制;部分余震发生在与上述主发震断层近乎垂直的倾向SE的反冲断层上;龙门山断裂带前山断裂可能参与了部分余震活动.P轴近水平且优势方位单一,呈NW-SE向,与龙门山断裂带南段所处区域构造应力场方向一致,反映芦山地震震源区主要受区域构造应力场控制,芦山地震是近NE-SW向断层在近水平的NW-SE向主压应力挤压作用下发生逆冲运动的结果.序列中6次非逆冲型地震均发生在主震震中附近,且主震震中附近P轴仰角变化明显,表明主震对其震中附近局部区域存在明显的应力扰动.(3)序列整体及不同震级段的应变花均呈NW向挤压白瓣形态,显示芦山地震震源区深部构造呈逆冲运动、NW向纯挤压变形.各震级段的应变花方位与形状一致,具有震级自相似性特征,揭示震源区深部构造运动和变形模式与震级无关.(4)不同深度的应变花形态以NW-NWW向挤压白瓣为优势,显示震源区构造无论是总体还是分段均以NW-NWW向挤压变形为特征.但应变花方位与形状随深度仍具有较明显的变化,可能反映了震源区构造变形在深度方向上存在分段差异.(5)芦山地震震源体尺度较小,且主震未发生在龙门山断裂带南段主干断裂上,南段长期积累的应变能未能得到充分释放,南段仍存在发生强震的危险.  相似文献   
38.
In the Lesser Caucausus the Sevan-Akera ophiolites of N Armenia have lithological features of a slow-spreading oceanic lithosphere: serpentinites are frequently exposed and hydrothermalized at sea-floor level, plutonic rocks and dykes are rare. A complete differentiation trend is observed from mafic norites evolving to diorites and plagiogranites. Normal faults have exposed some of the deep magmatic rocks at sea-floor level. Geochemically, two distinct lava flow series have been distinguished: (1) a contaminated Mid-Oceanic Ridge Basalt (MORB) series evolving from gabbros to plagiogranites and from basalts to basaltic andesites, exhibiting slight calc-alkaline features (enrichments in Large Ion Lithophile Elements (LILE); negative anomalies in Nb–Ta and Ti relative to N-MORB); (2) an alkaline series evolving from basanites to trachy-andesites (on anhydrous basis). 40Ar/39Ar age on amphibole-bearing gabbros evidence a Middle Jurassic age (165.3 ± 1.7 Ma, 2σ) for oceanic crust formation. Structural data, including geological cross-sections and logs of the ophiolite along the northern part of Sevan Lake allow discussing the geodynamic evolution of that segment of the Amassia-Sevan-Akera ophiolitic suture zone.  相似文献   
39.
40.
Historical and active seismicity in the south-western Alps (France and Italy) shows the recurrence of relatively high-magnitude earthquakes (M  5.8), like the one that recently affected the Italian Apennine range (M = 6.3 on the 30th March 2009). However, up-to-date detailed mapping of the active fault network has been poorly established. The evaluation of seismological hazard in particular in the highly populated French and Italian coastal region cannot be done without this. Here, we present a detailed study of the main active fault system, based on geological observations along the south-western flank of the Alpine arc. This N140° right-lateral strike-slip active fault system runs along the edge of the Argentera-Mercantour range and can be followed down to the Mediterranean Sea. It is evidenced by (1) Holocene offsets of glacial geomorphology witnessing ongoing fault activity since 10 ka, (2) widespread recent (10–20 Ma) pseudotachylytes featuring long term activity of the faults, (3) active landslides along the main fault zone, (4) geothermal anomalies (hot springs) emerging in the active faults, (5) ongoing low-magnitude seismic activity and (6) localization of the main historical events. In the light of our investigations, we propose a new tectonic pattern for the active fault system in the south-western Alps.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号