首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   925篇
  免费   322篇
  国内免费   342篇
测绘学   146篇
大气科学   231篇
地球物理   120篇
地质学   186篇
海洋学   648篇
天文学   17篇
综合类   73篇
自然地理   168篇
  2024年   8篇
  2023年   41篇
  2022年   52篇
  2021年   62篇
  2020年   53篇
  2019年   57篇
  2018年   58篇
  2017年   59篇
  2016年   57篇
  2015年   78篇
  2014年   80篇
  2013年   76篇
  2012年   58篇
  2011年   67篇
  2010年   42篇
  2009年   42篇
  2008年   51篇
  2007年   48篇
  2006年   41篇
  2005年   62篇
  2004年   47篇
  2003年   55篇
  2002年   32篇
  2001年   36篇
  2000年   33篇
  1999年   42篇
  1998年   46篇
  1997年   33篇
  1996年   29篇
  1995年   23篇
  1994年   32篇
  1993年   20篇
  1992年   21篇
  1991年   21篇
  1990年   6篇
  1989年   11篇
  1988年   4篇
  1986年   1篇
  1985年   1篇
  1983年   1篇
  1981年   2篇
  1965年   1篇
排序方式: 共有1589条查询结果,搜索用时 31 毫秒
101.
This study investigates recent climate change over the Arctic and its link to the mid-latitudes using the ERA-Interim global atmospheric reanalysis data from the European Center for Medium-Range Weather Forecast (ECMWF). Since 1979, sub- stantial surface warming, associated with the increase in anthropogenic greenhouse gases, has occurred over the Arctic. The great- est warming in winter has taken place offshore in the Kara-Barents Sea, and is associated with the increase in turbulent heat fluxes from the marginal ice zone. In contrast to the marked warming over the Arctic Ocean in winter, substantial cooling appears over Siberia and eastern Asia, linked to the reduction of Arctic sea ice during the freezing season (September-March). However, in summer, very little change is observed in surface air temperature over the Arctic because increased radiative heat melts the sea ice and the amount of turbulent heat gain from the ocean is relatively small. The heat stored in the upper ocean mixed layer in summer with the opening of the Arctic Ocean is released back to the atmosphere as turbulent heat fluxes during the autumn and through to the following spring. This warming of the Arctic and the reduced sea ice amplifies surface cooling over Siberia and eastern Asia in winter.  相似文献   
102.
中国大陆重力场非潮汐时空变化特征的初步分析   总被引:2,自引:0,他引:2  
本文基于Tsoft软件在潮汐数据预处理中的应用,采用Tsoft数据预处理软件和别尔采夫滤波相结合方法,提取了覆盖中国大陆28个重力固体潮台站连续观测数据的非潮汐分量.对各台站2008~2011年的连续数据,进行了缺失数据补接、地震动事件提取和去除非线性漂移等预处理工作,并通过滤波提取固体潮非潮汐分量.结果表明:除在贵阳、勐腊和十堰3个原始数据质量较差的台站外,其它台站观测数据应用本文方法均取得良好的结果.在此基础上,对处理结果采用滑动平均,将非潮汐分量结果的月均值与GRACE卫星和CMAP降水记录的月采样数据进行对比,结果显示了地表降水同重力变化具有一定相关性特征.此外,基于Tsoft软件的分段曲线漂移拟合能有效去除原始数据中的漂移.  相似文献   
103.
矿产资源利用现状调查项目具体工作方法的重点和难点之一便是块段对比。本方法工作量很大、对比过程繁琐、数据量巨大且对比及计算过程中很容易出错,经过我省鸡东煤炭矿区储量核查示范项目、鹤岗煤炭矿区核查试点项目及全国各地一年多的实践,研究出一系列新的块段对比方法,如基本块段对比法、块段“漂移对比法”、“大块段”对比法、矿体对比法及矿权对比法等。这些方法的灵活运用大大简化了块段对比工作,极大地推动了项目的顺利进行。下面,笔者主要谈谈对块段“漂移对比法”的认识。  相似文献   
104.
南极普里兹湾海冰厚度的电磁感应探测方法研究   总被引:1,自引:0,他引:1       下载免费PDF全文
本文介绍一种由EM31-ICE型电磁感应仪和激光测距仪组合而成的船载电磁感应海冰厚度探测系统. 针对海冰和海水的电学特征,运用电磁感应技术提取探测系统至海冰下底面的距离,运用激光测距仪测量冰面粗糙度和探测系统至海冰上表面的距离,两组数据结合,实现了海冰厚度的探测. 通过南极现场探测数据分析,并与钻孔实测冰厚数据对比研究,定量分析了探测系统距离冰面的高度效应,建立了该系统冰厚测定值随高度变化的修正关系式,并对船载航行数据进行了系统校正. 与SCAR ASPeCt的冰厚数据对比分析,表明该系统能够获得可靠的海冰厚度并具有较高的精度,且能满足对极区大范围海冰厚度观测的需求.  相似文献   
105.
利用一维全粒子模拟得到的垂直无碰撞激波的位形,通过试验粒子方法研究了不同初始能量粒子的激波加速机制.将与激波相互作用的离子分成反射和直接穿过两类,发现只有被激波反射的离子可被激波明显加速,其中初始能量较小的反射离子通过激波冲浪机制加速,而初始能量较大的离子通过激波漂移加速机制加速.同时激波厚度还对离子被加速过程有重要影响.  相似文献   
106.
渤海冰-海洋耦合模式Ⅰ.模式和参数研究   总被引:2,自引:0,他引:2  
在国内外冰-海洋耦合模式研究基础上,根据渤海水文、气象和冰情特点,以国家海洋环境预报中心的渤海海冰预报模式和POM海洋模式为基础,开发了一个冰-海洋耦合模式.在该耦合模式中,冰和海洋之间的动量和热量交换是双向的,冰厚和冰密集度的变化不仅由冰表面和冰底的热收支决定,还由开阔水的表面热收支决定.侧重阐述了耦合模式的动力和热力学过程的耦合,并对模式中一些热力参数进行了讨论.  相似文献   
107.
2005/2006年度莱州湾东部的海冰灾害及其影响   总被引:1,自引:0,他引:1  
莱州湾是水深较浅的半封闭海湾,与外海海水的交换缓慢,受黄河等十几条入海河流汇入的淡水影响使海水的盐度较低.受寒潮影响莱州湾内海冰灾害发生频繁.莱州湾的海冰灾害分5个冰情等级.在冬季气温偏高的年份,莱州湾内形成Ⅰ、Ⅱ级海冰,沿岸一般没有固定冰形成;一般年份形成Ⅲ级海冰,西岸和南岸冰情较严重,有固定冰形成;在冬季气温偏低的年份,形成Ⅳ级或Ⅴ级海冰,南岸、西岸的固定冰宽度较大,有时整个莱州湾海面都分布流冰.2005年末~2006年初在莱州湾东岸形成了一次较严重的海冰灾害,莱州市近海海湾扇贝养殖的经济损失达400万元以上.为减轻未来海冰灾害带来的损失提出了加强海冰灾害的监测和预报技术研究,严格管理近海养殖生产作业,莱州湾沿岸地方政府应制定<海冰灾害应急预案>,建设和完善海冰灾害应急防御体系等防御海冰灾害的对策.  相似文献   
108.
The sea ice cover in the Arctic Ocean has been reducing and hit the low record in the summer of 2007. The anomaly was extremely large in the Pacific sector. The sea level height in the Bering Sea vs. the Greenland Sea has been analyzed and compared with the current meter data through the Bering Strait. A recent peak existed as a consequence of atmospheric circulation and is considered to contribute to inflow of the Pacific Water into the Arctic Basin. The timing of the Pacific Water inflow matched with the sea ice reduction in the Pacific sector and suggests a significant increase in heat flux. This component should be included in the model prediction for answering the question when the Arctic sea ice becomes a seasonal ice cover.  相似文献   
109.
An overview of the seasonal variation of sea-ice cover in Baffin Bay and the Labrador Sea is given. A coupled ice-ocean model, CECOM, has been developed to study the seasonal variation and associated ice-ocean processes. The sea-ice component of the model is a multi-category ice model in which mean concentration and thickness are expressed in terms of a thickness distribution function. Ten categories of ice thickness are specified in the model. Sea ice is coupled dynamically and thermodynamically to the Princeton Ocean Model. Selected results from the model including the seasonal variation of sea ice in Baffin Bay, the North Water polynya and ice growth and melt over the Labrador Shelf are presented.  相似文献   
110.
Primary production in the Bering and Chukchi Seas is strongly influenced by the annual cycle of sea ice. Here pelagic and sea ice algal ecosystems coexist and interact with each other. Ecosystem modeling of sea ice associated phytoplankton blooms has been understudied compared to open water ecosystem model applications. This study introduces a general coupled ice-ocean ecosystem model with equations and parameters for 1-D and 3-D applications that is based on 1-D coupled ice-ocean ecosystem model development in the landfast ice in the Chukchi Sea and marginal ice zone of Bering Sea. The biological model includes both pelagic and sea ice algal habitats with 10 compartments: three phytoplankton (pelagic diatom, flagellates and ice algae: D, F, and Ai) , three zooplankton (copepods, large zooplankton, and microzooplankton : ZS, ZL, ZP) , three nutrients ( nitrate + nitrite, ammonium, silicon : NO3 , NH4, Si) and detritus (Det). The coupling of the biological models with physical ocean models is straightforward with just the addition of the advection and diffusion terms to the ecosystem model. The coupling with a multi-category sea ice model requires the same calculation of the sea ice ecosystem model in each ice thickness category and the redistribution between categories caused by both dynamic and thermodynamic forcing as in the physical model. Phytoplankton and ice algal self-shading effect is the sole feedback from the ecosystem model to the physical model.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号