首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   121篇
  免费   11篇
  国内免费   8篇
测绘学   1篇
地球物理   24篇
地质学   93篇
海洋学   3篇
综合类   1篇
自然地理   18篇
  2021年   1篇
  2019年   1篇
  2018年   1篇
  2017年   1篇
  2016年   1篇
  2015年   2篇
  2014年   8篇
  2013年   8篇
  2012年   3篇
  2011年   3篇
  2010年   3篇
  2009年   12篇
  2008年   10篇
  2007年   11篇
  2006年   7篇
  2005年   14篇
  2004年   8篇
  2003年   11篇
  2002年   9篇
  2001年   3篇
  1998年   2篇
  1997年   4篇
  1996年   2篇
  1995年   1篇
  1994年   1篇
  1993年   5篇
  1992年   1篇
  1991年   1篇
  1990年   3篇
  1988年   2篇
  1987年   1篇
排序方式: 共有140条查询结果,搜索用时 203 毫秒
111.
The Pénestin section (southern Brittany) presents large regular undulations, commonly interpreted as evidence of periglacial pingos. It is an upper Neogene palaeoestuary of the Vilaine River reactivated during the middle Quaternary (middle terrace). It is incised into a thick kaolinitic saprolite and deformed by saprolite diapirs. This paper presents the arguments leading to a mechanistic interpretation of the deformations at Pénestin. Neither recent transpressive tectonics nor diagnostic evidence of periglacial pingo have been found despite evidence for a late paleo-permafrost. The major deformational process is shale diapirism, initially triggered by co-seismic water supply, with further loading and lateral spreading on an already deformed and deeply weathered basement, which allowed the shale diapirism to develop. Deformations are favoured by the liquefaction of the saprolite and a seaward mass movement and recorded, rather distant, effects of an earthquake (c. 280 ka B.P.) resulting from the progressive subsidence of the southern Armorican margin. These deformations triggered by an earthquake are similar to those induced by classical shale diapirism. They are probably common in tectonically active continental environments with shallow water table.  相似文献   
112.
A moderate-sized (Mw  5.3) earthquake occurred in the Dead Sea basin on February 11, 2004. A rigorous seismological analysis of the main shock and numerous aftershocks suggests that seismogenic structure was a secondary, antithetic fault within the Dead Sea fault system. The main shock is well located using all available regional seismic stations, and 43 aftershocks were precisely located relative to the main shock using a double difference algorithm. The first motion, focal mechanism for this earthquake demonstrates NNW–SSE and ENE–WSW striking nodal planes, and the aftershocks distribution is consistent with the latter — indicating a right-lateral sense of displacement. This orientation and sense of shear are consistent with similarly oriented geological faults around the Dead Sea basin — these structures are likely antithetic faults within the transform system. Although moderate in size, earthquakes that occur very close to the large Dead Sea fault system warrant consideration in the earthquake hazard assessment of the region: For example, owing to the proximity to the main fault, moderate earthquakes such as this may produce static changes in Coulomb stress along the main fault.  相似文献   
113.
We investigate the seismic properties of modern crustal seismicity in the northwestern Sierras Pampeanas of the Andean retroarc region of Argentina. We modelled the complete regional seismic broadband waveforms of two crustal earthquakes that occurred in the Sierra de Velasco on 28 May 2002 and in the Sierra de Ambato on 7 September 2004. For each earthquake we obtained the seismic moment tensor inversion (SMTI) and tested for its focal depth. Our results indicate mainly thrust focal mechanism solutions of magnitudes Mw 5.8 and 6.2 and focal depths of 10 and 8 km, respectively. These results represent the larger seismicity and shallower focal depths in the last 100 years in this region. The SMTI 2002 and 2004 solutions are consistent with previous determinations for crustal seismicity in this region that also used seismic waveform modelling. Taken together, the results for crustal seismicity of magnitudes ≥5.0 in the last 30 years are consistent with an average P-axis horizontally oriented by an azimuth of 125° and T-axis orientation of azimuth 241° and plunge 58°. This modern crustal seismicity and the historical earthquakes are associated with two active reverse faulting systems of opposite vergences bounding the eastern margin of the Sierra de Velasco in the south and the southwestern margin of the Sierra de Ambato in the north. Strain recorded by focal mechanisms of the larger seismicity is very consistent over this region and is in good agreement with neotectonic activity during the last 11,000 years by Costa (2008) and Casa et al. (in press); this shows that the dominant deformation in this part of the Sierras Pampeanas is mainly controlled by contraction. Seismic deformation related to propagation of thrusts and long-lived shear zones of this area permit to disregard previous proposals, which suggested an extensional or sinistral regime for the geomorphic evolution since Pleistocene.  相似文献   
114.
First observations of geologically young rock faults and folds in New York in the late nineteenth century were shortly followed by others in Ontario. Remapping of the Paleozoic rocks began in the 1930s, and Quaternary geology mapping became organized in the 1950s, leading to further discoveries of faults and folds in the bedrock. Engineering works in the Niagara and Hamilton areas from the 1890s to the 1970s encountered repeated problems of rock squeeze. The separate geological and engineering experiences were linked in the 1970s, and with heightened awareness, discoveries of rock disturbances (mainly popups) greatly increased in the 1970s and 1980s. Understanding centered on high horizontal stress in the bedrock, which became quantified through rock testing and modeling. The creation of the Multi-Agency Group for Neotectonics in Eastern Canada (MAGNEC) in 1986 brought together a diverse group interested in all aspects of neotectonics, including the distribution and causes of rock stress and the potential implications for seismic risk. The existence of nuclear power plants sensitive to variations in the stress environment and high population densities near the Great Lakes provided motivation for further attention, and Prince Edward County was designated for special study. Recent suggestions of reduced seismic activity under ice sheets and increased activity associated with isostatic uplift during their retreat lead to the question whether seismic risk is slowly decreasing as uplift rates decline.  相似文献   
115.
Tertiary and/or Quaternary tectonic faulting is documented in three areas of southernmost Illinois: the Fluorspar Area Fault Complex (FAFC) in Pope and Massac Counties, the Ste. Genevieve Fault Zone (SGFZ) in Alexander and Union Counties, and the Commerce Fault Zone (CFZ) in Alexander County.

In the FAFC, faults that strike NE and NNE displace Mounds Gravel (late Miocene to early Pleistocene) and, locally, the Metropolis terrace gravel (Pleistocene; pre-Woodfordian). No Woodfordian or younger deposits are deformed. Faults typically outline narrow, linear grabens that formed under tension with a component of strike slip.

North-south to NW-trending vertical faults near the southeast end of the SGFZ displace Eocene sediments. Again, faults outline narrow grabens and show indications of strike slip. Deformed Quaternary sediments have not been observed.

The CFZ, which trends northeast, displaces Mounds Gravel in Illinois and units as young as Peoria Silt (Woodfordian) in Missouri. Quaternary movement has been interpreted as right-lateral strike-slip. The CFZ coincides with a subtle gravity and magnetic lineament and seems to reflect a major feature in the basement. Surface expression in Illinois is subtle, but mafic and ultramafic intrusions, hydrothermal alteration and small faults align with the Commerce geophysical lineament. Earthquake foci in Missouri and Illinois lie on or close to the CFZ; some focal mechanisms fit the fault trend.

Among these structures, only the CFZ exhibits slip that conforms to the current stress field (principal compressive stress axis E-W to ENE-WSW). Possibly, the stress field changed during Neogene time. Alternatively, high fluid pressures or local stress concentrations may have induced slip on less favorably oriented fractures. Tighter constraints are needed on timing, magnitude, and direction of Neogene displacement.  相似文献   

116.
The Fore-Alps of western Veneto and Trentino regions belong to the central Southern Alps (NE Italy), in which there is little evidence of very fresh surface ruptures or surface faulting. This does not seem to match historical data about earthquakes, some of which have been very intense. The strong influence of the inherited structures makes it difficult to detect a direct link between morphotectonic features and present-day stress fields.In the present study, four areas (Orsara, Scandole, Naole and Soran) with surface faulting and surface rupture features were examined, and models of morphotectonic evolution are discussed. In the Lessini Mountains, the Orsara graben and Scandole ridge show examples of surface faulting and surface rupture, respectively, reactivating Paleogene normal faults and fractures. Within the Orsara graben, rocky bluffs displace the previous morphological features. The bluffs are some decimetres to some metres high and are practically devoid of evidence of either physical or chemical weathering; on the slopes above them are steep areas which may be interpreted as the remnants of previous strongly weathered bluffs. The Scandole ridge has many trenches, some with rocky walls, which may be the result of several episodes of morphotectonic rupture.In the Giudicarie Belt, the Naole and Mt. Soran surface faulting landforms are details within large frontal culmination walls of Neogene thrusts. The Naole ridge corresponds to the southeastern sector of Monte Baldo. Here, inside a fault angle valley, a sinuous scarp originating from surface faulting marks the base of the fault scarp slope. Ridge splitting is the expression of the backward migration of separation niches due to slope tectonics, also evidenced on the slope by several terrace-like features and by a lower belt of very thick slope breccias. On Mt. Soran, in the Gruppo di Brenta massif, the surface faulting scarp faces uphill, giving rise to a trench-like feature. Downvalley of the scarp, there is the niche of a large landslide dated to 3 kyears B.P.All these landforms are consistent with slope tectonic movements caused by intense earthquakes. Whereas the morphostructures in the Lessini Mountains are the result of responses by sensitive structures, the Naole and Mt. Soran features express the evolution of frontal culmination walls of thrusts, with clear evidence of present-day tectonic activity.On the basis of the weathering of the scarps and associated features, the relative seismotectonic episodes probably occurred between the Bronze and Middle Ages.  相似文献   
117.
 Radon concentration was measured in 133 water samples from tubewells, handpumps, dug wells and springs of the Doon Valley, Outer Himalaya, India. The observed radon values were found to vary from 10 to 154 Bq/l whereas radium in selected water samples varied from 0.11 to 0.75 Bq/l. Three different clusters of high radon values were observed in the north-western, central and south-eastern parts of the Doon Valley. These clusters were found to be associated with tectonics (thrust/fault) and associated uranium mineralization in the area. In general, radon concentration in groundwater was found to be positively correlated with the depth of the wells, whereas no significant correlation was observed between radon concentration in groundwater and the water temperature, pH value, conductivity and altitude of the water samples. An attempt has also been made to determine the nature and extent of aquifers in the Doon Valley on radon concentration in groundwater. The variation in radon concentration within the groundwater of the study area was found to be controlled by the neotectonic activity and geohydrological processes that occur in the area. The impact of these activities on radon concentration in groundwater are discussed. Received: 17 September 1999 · Accepted: 11 April 2000  相似文献   
118.
119.
The Western Alps’ active tectonics is characterized by ongoing widespread extension in the highest parts of the belt and transpressive/compressive tectonics along its borders. We examine these contrasting tectonic regimes using a multidisciplinary approach including seismotectonics, numerical modeling, GPS, morphotectonics, fieldwork, and brittle deformation analysis. Extension appears to be the dominant process in the present-day tectonic activity in the Western Alps, affecting its internal areas all along the arc. Shortening, in contrast, is limited to small areas located along at the outer borders of the chain. Strike-slip is observed throughout the Alpine realm and in the foreland. The stress-orientation pattern is radial for σ3 in the inner, extensional zones, and for σ1 in the outer, transcurrent/tranpressional ones. Extensional areas can be correlated with the parts of the belt with the thickest crust. Quantification of seismic strain in tectonically homogeneous areas shows that only 10–20% of the geodesy-documented deformation can be explained by the Alpine seismicity. We propose that, Alpine active tectonics are ruled by isostasy/buoyancy forces rather than the ongoing shortening along the Alpine Europe/Adria collision zone. This interpretation is corroborated by numerical modeling. The Neogene extensional structures in the Alps formed under increasingly brittle conditions. A synthesis of paleostress tensors for the internal parts of the West-Alpine Arc documents major orogen-parallel extension with a continuous change in σ3 directions from ENE–WSW in the Simplon area, to N–S in the Vanoise area and to NNW–SSE in the Briançon area. Minor orogen-perpendicular extension increases from N to S. This second signal correlates with the present-day geodynamics as revealed by focal-plane mechanisms analysis. The orogen-parallel extension could be related to the opening of the Ligurian Sea during the Early-Middle Miocene and to compression/rotation of the Adriatic indenter inducing lateral extrusion.  相似文献   
120.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号