首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   232篇
  免费   11篇
  国内免费   2篇
测绘学   1篇
大气科学   9篇
地球物理   61篇
地质学   86篇
海洋学   24篇
天文学   2篇
自然地理   62篇
  2023年   1篇
  2021年   1篇
  2020年   5篇
  2019年   1篇
  2018年   2篇
  2017年   4篇
  2016年   5篇
  2015年   7篇
  2014年   3篇
  2013年   6篇
  2012年   3篇
  2011年   4篇
  2010年   3篇
  2009年   18篇
  2008年   23篇
  2007年   20篇
  2006年   18篇
  2005年   12篇
  2004年   13篇
  2003年   17篇
  2002年   10篇
  2001年   20篇
  2000年   12篇
  1999年   5篇
  1998年   3篇
  1997年   6篇
  1996年   3篇
  1995年   4篇
  1994年   4篇
  1993年   3篇
  1992年   1篇
  1991年   2篇
  1990年   2篇
  1987年   2篇
  1978年   1篇
  1977年   1篇
排序方式: 共有245条查询结果,搜索用时 31 毫秒
31.
32.
33.
Heimaey is the southernmost and also the youngest of nine volcanic centres in the southward-propagating Eastern Volcanic Zone, Iceland. The island of Heimaey belongs to the Vestmannaeyjar volcanic system (850 km2) and is situated 10 km off the south coast of Iceland. Although Heimaey probably started to form during the Upper Pleistocene all the exposed subaerial volcanics (10 monogenetic vents covering an area of 13.4 km2) are of Holocene age. Heimaey is composed of roughly equal amounts of tuff/tuff-breccias and lavas as most eruptions involve both a phreatomagmatic and an effusive phase. The compositions of the extrusives are predominantly alkali basalts belonging to the sodic series. Repeated eruptions on Heimaey, and the occurrence of slightly more evolved rocks (i.e. hawaiite approaching mugearite), might indicate that the island is in an early stage of forming a central volcano in the Vestmannaeyjar system. This is further substantiated by the development of a magma chamber at 10–20 km depth during the most recent eruption in 1973 and by the fact that the average volume of material produced in a single eruption on Heimaey is 0.32 km3 (dense rock equivalent), which is twice the value reported for the Vestmannaeyjar system as a whole. We find no support for the previously postulated episodic behaviour of the volcanism in the Vestmannaeyjar system. However, the oldest units exposed above sea level, i.e. the Norðurklettar ridge, probably formed over a 500-year interval during the deglaciation of southern Iceland. The absence of equilibrium phenocryst assemblages in the Heimaey lavas suggests that magma rose quickly from depth, without long-time ponding in shallow-seated crustal magma chambers. Eruptions on Heimaey have occurred along two main lineaments (N45°E and N65°E), which indicate that it is seismic events associated with the southward propagation of the Eastern Volcanic Zone that open pathways for the magma to reach the surface. Continuing southward propagation of the Eastern Volcanic Zone suggests that the frequency of volcanic eruptions in the Vestmannaeyjar system might increase with time, and that Heimaey may develop into a central volcano like the mature volcanic centres situated on the Icelandic mainland.  相似文献   
34.
35.
Three large earthquakes (Mw>4.5) were triggered within 5 min, 85 km west of a Mw 6.5 earthquake in the South Iceland Seismic Zone (SISZ). We report on surface effects of these triggered earthquakes, which include fresh rupture, widespread rockfall, disrupted rockslides and block slides. Field data confirm that the earthquakes occurred along N-striking right-lateral strike-slip faults. Field data also support the conclusion from modeling of InSAR data that deformation from the second triggered event was more significant than for the other two. A major hydrological effect was the draining of water through an open fissure on a lake bed, lowering the lake level by greater than 4 m. Field relationships suggest that a component of aseismic slip could have been facilitated by water draining into the fault zone.  相似文献   
36.
We present the results of a comprehensive major element, traceelement and Sr–Nd–Pb–O isotopic study of post-glacialvolcanic rocks from the Neovolcanic zones on Iceland. The rocksstudied range in composition from picrites and tholeiites, whichdominate in the main rift systems, to transitional and alkalicbasalts confined to the off-rift and propagating rift systems.There are good correlations of rock types with geochemical enrichmentparameters, such as La/Sm and La/Yb ratios, and with long-termradiogenic tracers, such as Sr–Nd–Pb isotope ratios,indicating a long-lived enrichment/depletion history of thesource region. 87Sr/86Sr vs 143Nd/144Nd defines a negative array.Pb isotopes define well-correlated positive arrays on both 206Pb/204Pbvs 207Pb/204Pb and 208Pb/204Pb diagrams, indicating mixing ofat least two major components: an enriched component representedby the alkali basalts and a depleted component represented bythe picrites. In combined Sr–Nd–Pb isotopic spacethe individual rift systems define coherent mixing arrays withslightly different compositions. The enriched component hasradiogenic Pb (206Pb/204Pb > 19·3) and very similargeochemistry to HIMU-type ocean island basalts (OIB). We ascribethis endmember to recycling of hydrothermally altered upperbasaltic oceanic crust. The depleted component that is sampledby the picrites has unradiogenic Pb (206Pb/204Pb < 17·8),but geochemical signatures distinct from that of normal mid-oceanridge basalt (N-MORB). Highly depleted tholeiites and picriteshave positive anomalies in mantle-normalized trace element diagramsfor Ba, Sr, and Eu (and in some cases also for K, Ti and P),negative anomalies for Hf and Zr, and low 18Oolivine values(4·6–5·0) below the normal mantle range.All of these features are internally correlated, and we, therefore,interpret them to reflect source characteristics and attributethem to recycled lower gabbroic oceanic crust. Regional compositionaldifferences exist for the depleted component. In SW Icelandit has distinctly higher Nb/U (68) and more radiogenic 206Pb/204Pbratios (18·28–18·88) compared with the NErift (Nb/U 47; 206Pb/204Pb = 18·07–18·47).These geochemical differences suggest that different packagesof recycled oceanic lithosphere exist beneath each rift. A thirdand minor component with relatively high 87Sr/86Sr and 207Pb/204Pbis found in a single volcano in SE Iceland (Öræfajökullvolcano), indicating the involvement of recycled sediments inthe source locally. The three plume components form an integralpart of ancient recycled oceanic lithosphere. The slope in theuranogenic Pb diagram indicates a recycling age of about 1·5Ga with time-integrated Th/U ratios of 3·01. Surprisingly,there is little evidence for the involvement of North AtlanticN-MORB source mantle, as would be expected from the interactionof the Iceland plume and the surrounding asthenosphere in formof plume–ridge interaction. The preferential samplingof the enriched and depleted components in the off-rift andmain rift systems, respectively, can be explained by differencesin the geometry of the melting regions. In the off-rift areas,melting columns are truncated deeper and thus are shorter, whichleads to preferential melting of the enriched component, asthis starts melting deeper than the depleted component. In contrast,melting proceeds to shallower depths beneath the main rifts.The longer melting columns also produce significant amountsof melt from the more refractory (lower crustal/lithospheric)component. KEY WORDS: basalts; trace element and Sr, Nd, Pb, O isotope geochemistry; Iceland plume; isotope ratios; oceanic crustal recycling; partial melting; plume–ridge interaction  相似文献   
37.
Beth Greenhough   《Geoforum》2007,38(6):1140-1151
Informed consent has often been presented as a kind of ethical panacea, the best way of guarding against medical and scientific abuses of human rights. However recent empirical research has led bioethicists to question both the feasibility and the value of informed consent procedures. This paper also seeks to critique informed consent, but focuses less on its empirical shortcomings. Instead, this paper questions the assumption that ethics involves engaging in the kind of rational, distanced, objective reflection traditionally considered the basis of both scientific observation and ethical decision making. Drawing on recent insights from ethical geography and geographers studying the biotechnology industry, I wish to argue that ethical reflection is a relational and situated process, less about being distanced and objective, and more about recognizing how our ethical decisions are shaped by our social and material environment.  相似文献   
38.
The Reykjanes Peninsula in southwest Iceland is a highly oblique spreading segment of the Mid-Atlantic Ridge oriented about 30° from the direction of absolute plate motion. We present a complete and spatially accurate map of fractures for the Reykjanes Peninsula with a level of detail previously unattained. Our map reveals a variability in the pattern of normal, oblique- and strike-slip faults and open fractures which reflects both temporal and spatial strain partitioning within the plate boundary zone. Fracture density varies across the length and width of the peninsula, with density maxima at the ends and at the northern margin of the zone of volcanic activity. Fractures with similar strike cluster into distinct structural domains which can be related to patterns of faulting predicted for oblique extension and to their spatial distribution with respect to volcanic fissure swarms. Additional structural complexity on the Reykjanes Peninsula can be reconciled with magmatic periodicity and associated temporal strain partitioning implied by GPS data, as well as locally perturbed stress fields. Individual faults show variable slip histories, indicating that they may be active during both magmatic and amagmatic periods associated with different strain fields.  相似文献   
39.
Detailed facies analysis of hyaloclastites and associated lavas from eight table mountains and similar "hyaloclastite volcanoes" in the Icelandic rift zone contradict a rapid and continuous, "monogenetic", entirely subglacial evolution of most volcanoes studied. The majority of the exposed hyaloclastite deposits formed in large, stable lakes as indicated by widespread, up to 300-m-thick, continuous sections of deep water, shallow water and emergent facies. Salient features include extensively layered or bedded successions comprising mainly debris flow deposits, turbidites, base surge and fallout deposits consisting of texturally and compositionally variable, slightly altered hyaloclastites, as well as sheet and pillow lavas. In contrast, chaotic assemblages of coarser-grained, more poorly sorted and more strongly palagonitized hyaloclastite tuffs and breccias, as well as scoria and lava are interpreted to have formed under sub- or englacial conditions in small, chimney-like ice cavities or ice-bound lakes. Irregularly shaped and erratically arranged hyaloclastite bodies produced at variable water levels appear to have resulted mainly from rapid changes of the eruptive environment due to repeated build-up and drainage of ice-bound lakes as well as the restricted space between the ice walls. We distinguish a "deep water" facies formed during high water levels of the lake, a hydroclastic shallow water and emergent facies (leakage of the lake or growth of the volcano above the water surface). Our model implies the temporary existence of large, stable lakes in Iceland probably formed by climatically induced ice melting. The highly complex edifices of many table mountains and similar volcanoes were constructed during several eruptive periods in changing environments characterized by contrasting volcanic and sedimentary processes. Received: 10 June 1997 / Accepted: 28 July 1998  相似文献   
40.
Pressures of Crystallization of Icelandic Magmas   总被引:1,自引:0,他引:1  
Iceland lies astride the Mid-Atlantic Ridge and was createdby seafloor spreading that began about 55 Ma. The crust is anomalouslythick (20–40 km), indicating higher melt productivityin the underlying mantle compared with normal ridge segmentsas a result of the presence of a mantle plume or upwelling centeredbeneath the northwestern edge of the Vatnajökull ice sheet.Seismic and volcanic activity is concentrated in 50 km wideneovolcanic or rift zones, which mark the subaerial Mid-AtlanticRidge, and in three flank zones. Geodetic and geophysical studiesprovide evidence for magma chambers located over a range ofdepths (1·5–21 km) in the crust, with shallow magmachambers beneath some volcanic centers (Katla, Grimsvötn,Eyjafjallajökull), and both shallow and deep chambers beneathothers (e.g. Krafla and Askja). We have compiled analyses ofbasalt glass with geochemical characteristics indicating crystallizationof ol–plag–cpx from 28 volcanic centers in the Western,Northern and Eastern rift zones as well as from the SouthernFlank Zone. Pressures of crystallization were calculated forthese glasses, and confirm that Icelandic magmas crystallizeover a wide range of pressures (0·001 to 1 GPa), equivalentto depths of 0–35 km. This range partly reflects crystallizationof melts en route to the surface, probably in dikes and conduits,after they leave intracrustal chambers. We find no evidencefor a shallow chamber beneath Katla, which probably indicatesthat the shallow chamber identified in other studies containssilica-rich magma rather than basalt. There is reasonably goodcorrelation between the depths of deep chambers (> 17 km)and geophysical estimates of Moho depth, indicating that magmaponds at the crust–mantle boundary. Shallow chambers (<7·1 km) are located in the upper crust, and probablyform at a level of neutral buoyancy. There are also discretechambers at intermediate depths (11 km beneath the rift zones),and there is strong evidence for cooling and crystallizing magmabodies or pockets throughout the middle and lower crust thatmight resemble a crystal mush. The results suggest that themiddle and lower crust is relatively hot and porous. It is suggestedthat crustal accretion occurs over a range of depths similarto those in recent models for accretionary processes at mid-oceanridges. The presence of multiple stacked chambers and hot, porouscrust suggests that magma evolution is complex and involvespolybaric crystallization, magma mixing, and assimilation. KEY WORDS: Iceland rift zones; cotectic crystallization; pressure; depth; magma chamber; volcanic glass  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号