首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   129篇
  免费   18篇
  国内免费   38篇
测绘学   36篇
大气科学   24篇
地球物理   29篇
地质学   53篇
海洋学   4篇
天文学   8篇
综合类   17篇
自然地理   14篇
  2023年   8篇
  2022年   12篇
  2021年   24篇
  2020年   25篇
  2019年   9篇
  2018年   13篇
  2017年   6篇
  2016年   6篇
  2015年   11篇
  2014年   8篇
  2013年   7篇
  2012年   7篇
  2011年   8篇
  2010年   4篇
  2009年   9篇
  2008年   15篇
  2007年   4篇
  2006年   1篇
  2005年   1篇
  2004年   1篇
  2001年   1篇
  2000年   1篇
  1999年   1篇
  1997年   1篇
  1996年   1篇
  1990年   1篇
排序方式: 共有185条查询结果,搜索用时 31 毫秒
41.
基于支持向量机的测井资料幅度异常验收方法研究   总被引:1,自引:1,他引:0       下载免费PDF全文
当前的测井资料质量标准基于人工验收制定,其中包含大量的定性标准.如何依据定性标准进行测井资料质量自动验收,是目前面临的一个难题.将支持向量机方法应用于测井资料幅度异常预测,在资料中挑选可疑样本,依据已有的专家验收结论建立预测模型,对测井资料幅度异常进行预测,避免了自动验收中必须将定性标准定量化的问题,在实际应用中有较好的效果,对同类工程问题的解决有一定的借鉴意义.  相似文献   
42.
本文详细阐述了并行计算技术及其在地球物理勘探数据处理中的发展现状和发展趋势,分析了几个代表性的并行算法实例.这些结果表明,在拥有强大的并行机的基础上,基于并行计算开发环境(MPI和PVM等)设计高效的并行算法,通过分配合理的并行粒度、通信开销、负载平衡等执行高效的并行计算,可以有效加快处理速度、降低成本.目前,并行算法在地震数据处理中应用已较为成熟,近年来向更实用的基于PC机群的并行技术发展.然而,在非地震方法中,并行算法应用较少见文献报道,研究尚处于初级研究阶段.在大地电磁的二维和三维正、反演问题上,并行计算技术逐渐得到越来越多关注和重视.随着资源和能源需求的增长,地球物理勘探向深度和广度快速发展,大幅增长的数据量使得高性能并行计算机和高效的并行算法在勘探地球物理学中的发展和应用将占据愈来愈重要的地位.  相似文献   
43.
GIS支持下基于支持向量机的滑坡危险性评价   总被引:1,自引:0,他引:1  
傅文杰 《地理科学》2008,28(6):838-841
以仙游县为例,探讨了将地理信息系统技术(GIS)和支持向量机(SVM)算法应用于滑坡灾害危险性评价的基本思路和技术路线。主要内容包括SVM的基本原理和方法、滑坡灾害危险性评价指标的选取和量化、SVM模型的建立以及具体的实现过程。实践证明该方法是一种较好的滑坡灾害危险性评价方法。  相似文献   
44.
Multi-scale support vector algorithms for hot spot detection and modelling   总被引:2,自引:2,他引:0  
The algorithmic approach to data modelling has developed rapidly these last years, in particular methods based on data mining and machine learning have been used in a growing number of applications. These methods follow a data-driven methodology, aiming at providing the best possible generalization and predictive abilities instead of concentrating on the properties of the data model. One of the most successful groups of such methods is known as Support Vector algorithms. Following the fruitful developments in applying Support Vector algorithms to spatial data, this paper introduces a new extension of the traditional support vector regression (SVR) algorithm. This extension allows for the simultaneous modelling of environmental data at several spatial scales. The joint influence of environmental processes presenting different patterns at different scales is here learned automatically from data, providing the optimum mixture of short and large-scale models. The method is adaptive to the spatial scale of the data. With this advantage, it can provide efficient means to model local anomalies that may typically arise in situations at an early phase of an environmental emergency. However, the proposed approach still requires some prior knowledge on the possible existence of such short-scale patterns. This is a possible limitation of the method for its implementation in early warning systems. The purpose of this paper is to present the multi-scale SVR model and to illustrate its use with an application to the mapping of Cs137 activity given the measurements taken in the region of Briansk following the Chernobyl accident.  相似文献   
45.
Characterization, correlation and provenance determination of tephra samples in sedimentary sections (tephrochronological studies) are powerful tools for establishing ages of depositional events, volcanic eruptions, and tephra dispersion. Despite the large literature and the advancements in this research field, the univocal attribution of tephra deposits to specific volcanic sources remains too often elusive. In this contribution, we test the application of a machine learning technique named Support Vector Machine to attempt shedding new light upon tephra deposits related to one of the most complex and debated volcanic regions on Earth: the Pliocene-Pleistocene magmatism in Italy. The machine learning algorithm was trained using one of the most comprehensive global petrological databases (GEOROC); 17 chemical elements including major (SiO2, TiO2, Al2O3, Fe2O3T, CaO, MgO, MnO, Na2O, K2O, P2O5) and selected trace (Sr, Ba, Rb, Zr, Nb, La, Ce) elements were chosen as input parameters. We first show the ability of support vector machines in discriminating among different Pliocene-Pleistocene volcanic provinces in Italy and then apply the same methodology to determine the volcanic source of tephra samples occurring in the Caio outcrop, an Early Pleistocene sedimentary section located in Central Italy. Our results show that: 1) support vector machines can successfully resolve high-dimensional tephrochronological problems overcoming the intrinsic limitation of two- and three-dimensional discrimination diagrams; 2) support vector machines can discriminate among different volcanic provinces in complex magmatic regions; 3) in the specific case study, support vector machines indicate that the most probable source for the investigated tephra samples is the so-called Roman Magmatic Province. These results have strong geochronological and geodynamical implications suggesting new age constraints (1.4 Ma instead of 0.8 Ma) for the starting of the volcanic activity in the Roman Magmatic Province.  相似文献   
46.
In this work, we tackle the challenge of quantitative estimation of reservoir dynamic property variations during a period of production, directly from four-dimensional seismic data in the amplitude domain. We employ a deep neural network to invert four-dimensional seismic amplitude maps to the simultaneous changes in pressure, water and gas saturations. The method is applied to a real field data case, where, as is common in such applications, the data measured at the wells are insufficient for properly training deep neural networks, thus, the network is trained on synthetic data. Training on synthetic data offers much freedom in designing a training dataset, therefore, it is important to understand the impact of the data distribution on the inversion results. To define the best way to construct a synthetic training dataset, we perform a study on four different approaches to populating the training set making remarks on data sizes, network generality and the impact of physics-based constraints. Using the results of a reservoir simulation model to populate our training datasets, we demonstrate the benefits of restricting training samples to fluid flow consistent combinations in the dynamic reservoir property domain. With this the network learns the physical correlations present in the training set, incorporating this information into the inference process, which allows it to make inferences on properties to which the seismic data are most uncertain. Additionally, we demonstrate the importance of applying regularization techniques such as adding noise to the synthetic data for training and show a possibility of estimating uncertainties in the inversion results by training multiple networks.  相似文献   
47.
《地学前缘(英文版)》2020,11(5):1789-1803
Video cameras are common at volcano observatories,but their utility is often limited during periods of crisis due to the large data volume from continuous acquisition and time requirements for manual analysis.For cameras to serve as effective monitoring tools,video frames must be synthesized into relevant time series signals and further analyzed to classify and characterize observable activity.In this study,we use computer vision and machine learning algorithms to identify periods of volcanic activity and quantify plume rise velocities from video observations.Data were collected at Villarrica Volcano,Chile from two visible band cameras located~17 km from the vent that recorded at 0.1 and 30 frames per second between February and April 2015.Over these two months,Villarrica exhibited a diverse range of eruptive activity,including a paroxysmal eruption on 3 March.Prior to and after the eruption,activity included nighttime incandescence,dark and light emissions,inactivity,and periods of cloud cover.We quantify the color and spatial extent of plume emissions using a blob detection algorithm,whose outputs are fed into a trained artificial neural network that categorizes the observable activity into five classes.Activity shifts from primarily nighttime incandescence to ash emissions following the 3 March paroxysm,which likely relates to the reemergence of the buried lava lake.Time periods exhibiting plume emissions are further analyzed using a row and column projection algorithm that identifies plume onsets and calculates apparent plume horizontal and vertical rise velocities.Plume onsets are episodic,occurring with an average period of~50 s and suggests a puffing style of degassing,which is commonly observed at Villarrica.However,the lack of clear acoustic transients in the accompanying infrasound record suggests puffing may be controlled by atmospheric effects rather than a degassing regime at the vent.Methods presented here offer a generalized toolset for volcano monitors to classify and track emission statistics at a variety of volcanoes to better monitor periods of unrest and ultimately forecast major eruptions.  相似文献   
48.
Accurate and current road network data is fundamental to land management and emergency response, yet challenging to produce for unpaved roads in rural and forested regions using traditional cartographic approaches. Automatic extraction of roads from satellite imagery using deep learning is a promising alternative gaining increasing attention, however most efforts have focused on urban paved roads and used very high spatial resolution imagery, which is less frequently available for rural regions. Additionally, road extraction routines still struggle to produce a fully-connected, vectorized road network. In this study covering a large forested area in Western Canada, we developed and evaluated a routine to automatically extract unpaved road pixels using a convolutional neural network (CNN), and then used the CNN outputs to update a pre-existing government road network and evaluate if and how it would change. To cover the large spatial extent mapped in this study, we trained the routine using moderately high-resolution satellite imagery from the RapidEye constellation and a ground-truth dataset collected with smartphones by organizations already operating and driving in the region. Performance of the road extraction was comparable to results achieved by others using very high-resolution imagery; recall accuracy was 89–97%, and precision was 85–91%. Using our approach to update the pre-existing road network would result in both removals and additions to the network, totalling over 1250 km, or about 20 % of the roads previously in the network. We discuss how road density estimates in the study area would change using this updated network, and situate these changes within the context of ongoing efforts to conserve grizzly bears, which are listed as a Threatened species in the region. This study demonstrates the potential of remote sensing to maintain current and accurate rural road networks in dynamic forest landscapes where new road construction is prevalent, yet roads are also frequently de-activated, reclaimed or otherwise not maintained.  相似文献   
49.
Vegetation phenology is a sensitive indicator that reflects the vegetation–atmosphere interactions and vegetation processes under global atmospheric changes. Fast-developing remote sensing technologies that monitor the land surface at high spatial and temporal resolutions have been widely used in vegetation phenology retrieval and analysis at a large scale. While researchers have developed many phenology retrieving methods based on remote sensing data, the relationships and differences among the phenology retrieving methods are unclear, and there is a lack of evaluation and comparison with the field phenology recoding data. In this study, we evaluated and compared eight phenology retrieving methods using Moderate Resolution Imaging Spectroradiometer (MODIS) and the USA National Phenology Network data from across North America. The studied phenology retrieving methods included six commonly used rule-based methods (i.e., amplitude threshold, the first-order derivative, the second-order derivative, the third-order derivative, the relative change curvature, and the curvature change rate) and two newly developed machine learning methods (i.e., neural network and random forest). At the large scale, the start of the season (SOS) values, derived by all methods, had similar spatial distributions; however, the retrieved values had large uncertainties in each pixel, and the end of the season (EOS) inverted values were largely different among methods. At the site scale, the SOS and EOS values extracted by the rule-based methods all had significant positive correlations with the field phenology observations. Among the rule-based methods, the amplitude threshold method performed the best. The machine learning methods outperformed the rule-based methods in terms of retrieving the SOS when assessed using the field observations. Our study highlighted that there were large differences among the methods in retrieving the vegetation phenology from satellite data and that researchers must be cautious in selecting an appropriate method for analyzing the satellite-retrieved phenology. Our results also demonstrated the importance of field phenology observations and the usefulness of the machine learning methods in understanding the satellite-based land surface phenology. These findings provide a valuable reference for the future development of global and regional phenology products.  相似文献   
50.
Wetland inventory maps are essential information for the conservation and management of natural wetland areas. The classification framework is crucial for successful mapping of complex wetlands, including the model selection, input variables and training procedures. In this context, deep neural network (DNN) is a powerful technique for remote sensing image classification, but this model application for wetland mapping has not been discussed in the previous literature, especially using commercial WorldView-3 data. This study developed a new framework for wetland mapping using DNN algorithm and WorldView-3 image in the Millrace Flats Wildlife Management Area, Iowa, USA. The study area has several wetlands with a variety of shapes and sizes, and the minimum mapping unit was defined as 20 m2 (0.002 ha). A set of potential variables was derived from WorldView-3 and auxiliary LiDAR data, and a feature selection procedure using principal components analysis (PCA) was used to identify the most important variables for wetland classification. Furthermore, traditional machine learning methods (support vector machine, random forest and k-nearest neighbor) were also implemented for the comparison of results. In general, the results show that DNN achieved satisfactory results in the study area (overall accuracy = 93.33 %), and we observed a high spatial overlap between reference and classified wetland polygons (Jaccard index ∼0.8). Our results confirm that PCA-based feature selection was effective in the optimization of DNN performance, and vegetation and textural indices were the most informative variables. In addition, the comparison of results indicated that DNN classification achieved relatively similar accuracies to other methods. The total classification errors vary from 0.104 to 0.111 among the methods, and the overlapped areas between reference and classified polygons range between 87.93 and 93.33 %. Finally, the findings of this study have three main implications. First, the integration of DNN model and WorldView-3 image is useful for wetland mapping at 1.2-m, but DNN results did not outperform other methods in this study area. Second, the feature selection was important for model performance, and the combination of most relevant input parameters contributes to the success of all tested models. Third, the spatial resolution of WorldView-3 is appropriate to preserve the shape and extent of small wetlands, while the application of medium resolution image (30-m) has a negative impact on the accurate delineation of these areas. Since commercial satellite data are becoming more affordable for remote sensing users, this study provides a framework that can be utilized to integrate very high-resolution imagery and deep learning in the classification of complex wetland areas.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号