首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   144篇
  免费   8篇
  国内免费   2篇
测绘学   3篇
大气科学   7篇
地球物理   38篇
地质学   45篇
海洋学   32篇
天文学   25篇
综合类   1篇
自然地理   3篇
  2022年   1篇
  2021年   2篇
  2020年   4篇
  2019年   4篇
  2018年   9篇
  2017年   3篇
  2016年   8篇
  2015年   12篇
  2014年   10篇
  2013年   9篇
  2012年   7篇
  2011年   11篇
  2010年   10篇
  2009年   12篇
  2008年   9篇
  2007年   2篇
  2006年   7篇
  2005年   7篇
  2004年   11篇
  2003年   6篇
  2002年   3篇
  2000年   2篇
  1998年   1篇
  1997年   1篇
  1995年   1篇
  1994年   1篇
  1978年   1篇
排序方式: 共有154条查询结果,搜索用时 312 毫秒
51.
Modes of occurrence of Au‐ and Ag‐bearing phases and their relation with associated hypogene ore minerals were examined with the objective to elucidate Au‐Ag distribution at the Esperanza porphyry deposit in the Eocene Centinela copper belt, using ore‐microscope modal analysis, semi‐quantitative analyses by automated mineralogy, electron probe microanalysis, and secondary ion mass spectrometer. The Esperanza hypogene mineralization is characterized by early‐stage chalcopyrite‐rich veinlets in the potassic alteration zone and later polymetallic stage with tennantite and galena in the chlorite‐sericitic alteration zone. Only the early‐stage chalcopyrite contains fine‐grained electrum (Au68Ag32 ‐ Au81Ag19) and hessite (Ag2Te), and thus yields positive correlations in Cu vs. Au and Cu vs. Ag grades that are clearly recognized in the hypogene sulfide zone. The early‐stage chalcopyrite grains frequently exhibit polysynthetic twinning suggestive of inversion from intermediate solid solution. These features suggest that the fine‐grained electrum and hessite are products exsolved in the cooling process with the intermediate solid solution to chalcopyrite inversion. In contrast, tennantite and galena of the later‐stage mineralization contain no detectable Ag, and it is thus proposed that the early‐stage inverted chalcopyrite is the principal storage of economically important precious metals.  相似文献   
52.
The global carbon cycle, one of the important biogeochemical cycles controlling the surface environment of the Earth, has been greatly affected by human activity. Anthropogenic nutrient loading from urban sewage and agricultural runoff has caused eutrophication of aquatic systems. The impact of this eutrophication and consequent photosynthetic activity on CO2 exchange between freshwater systems and the atmosphere is unclear. In this study, we focused on how nutrient loading to lakes affects their carbonate system. Here, we report results of surveys of lakes in Japan at different stages of eutrophication. Alkalization due to photosynthetic activity and decreases in PCO2 had occurred in eutrophic lakes (e.g., Lake Kasumigaura), whereas in an acidotrophic lake (Lake Inawashiro) that was impacted by volcanic hot springs, nutrient loading was changing the pH and carbon cycling. When the influence of volcanic activity was stronger in the past in Lake Inawashiro, precipitation of volcanic-derived iron and aluminum had removed nutrients by co-precipitation. During the last three decades, volcanic activity has weakened and the lake water has become alkalized. We inferred that this rapid alkalization did not result just from the reduction in acid inputs but was also strongly affected by increased photosynthetic activity during this period. Human activities affect many lakes in the world. These lakes may play an important part in the global carbon cycle through their influence on CO2 exchange between freshwater and the atmosphere. Biogeochemical changes and processes in these systems have important implications for future changes in aquatic carbonate systems on land.  相似文献   
53.
We have determined the density evolution of the sound velocity of dhcp-FeHx (x  1) up to 70 GPa at room temperature, by inelastic X-ray scattering and by X-ray diffraction. We find that the variation of VP with density is different for the ferromagnetic and nonmagnetic dhcp-FeHx, and that only nonmagnetic dhcp-FeHx follows Birch's law. Combining our results with Birch's law for iron and assuming an ideal two-component mixing model, we obtain an upper bound of the hydrogen content in the Earth's inner core, 0.23(6) wt.% H, corresponding to FeH0.13(3). The iron alloy with 0.23(6) wt.% H can satisfy the density, and compressional and shear sound velocities of the PREM inner core, assuming that there are no other light elements in the inner core.  相似文献   
54.
The Raman spectra of carbonaceous material (CM) from 19 metasediment samples collected from six widely separated areas of Southwest Japan and metamorphosed at temperatures from 165 to 655°C show systematic changes with metamorphic temperature that can be classified into four types: low‐grade CM (c. 150–280°C), medium‐grade CM (c. 280–400°C), high‐grade CM (c. 400–650°C), and well‐crystallized graphite (> c. 650°C). The Raman spectra of low‐grade CM exhibit features typical of amorphous carbon, in which several disordered bands (D‐band) appear in the first‐order region. In the Raman spectra of medium‐grade CM, the graphite band (G‐band) can be recognized and several abrupt changes occur in the trends for several band parameters. The observed changes indicate that CM starts to transform from amorphous carbon to crystallized graphite at around 280°C, and this transformation continues until 400°C. The G‐band becomes the most prominent peak at high‐grade CM suggesting that the CM structure is close to that of well‐crystallized graphite. In the highest temperature sample of 655°C, the Raman spectra of CM show a strong G‐band with almost no recognizable D‐band, implying the CM grain is well‐crystallized graphite. In the Raman spectra of low‐ to medium‐grade CM, comparisons of several band parameters with the known metamorphic temperature show inverse correlations between metamorphic temperature and the full width at half maximum (FWHM) of the D1‐ and D2‐bands. These correlations are calibrated as new Raman CM geothermometers, applicable in the range of c. 150–400°C. Details of the methodology for peak decomposition of Raman spectra from the low to medium temperature range are also discussed with the aim of establishing a robust and user‐friendly geothermometer.  相似文献   
55.
To examine the properties of winter mixed layer (ML) variability in the shelf-slope waters facing the Kuroshio, we analyzed historical temperature records and the simulated results of a triply nested high-resolution numerical model. As a candidate of the shelf-slope waters, we focused on Tosa Bay, off the southern Japan. A time series of observed monthly mean ML temperatures and depths in the bay exhibits a remarkable seasonal variation. The period when the ML develops can be divided into two regimes: from September to November, when the sea surface cooling is gradually enhanced, the ML temperature and depth decreases and increases, respectively; from January to March, the ML temperature and depth are kept nearly constant, while the sea surface cooling in January reaches its annual maximum. In the latter regime, variance for the monthly mean ML depth is the largest of the year. To further study the ML properties in the latter regime corresponding to winter, we examined simulated results. It was found that the largest variance for ML depth is attributed to a dominant intramonthly variation. This is related to a submesoscale variation with typical spatial scales of 10–20 km, induced by the Kuroshio and its frontal disturbances. Simulated monthly mean heat balance within the ML showed that heat advection balances with heat flux at the sea surface and entrainment through the ML bottom. Moreover, the monthly mean heat advection is determined mainly by the intramonthly eddy heat advection, suggesting that the high-frequency intramonthly variation related to submesoscale variations contributes significantly to the low-frequency monthly variations of the ML in winter.  相似文献   
56.
Natural Hazards - This study focused on flood damage assessment for future floods under the impact of climate change. Four river basins of Southeast Asia were selected for the study. They included...  相似文献   
57.
Short-term flow fluctuations in the southern central part of Onagawa Bay were examined using long-term mooring and hydrographic data observed during the period from May 2013 to April 2014. The short-term flow fluctuations were dominant in the periodic bands of 15–27 days and shorter than 10 days. The principal and minor components of these flow fluctuations were respectively along and across the local isobaths, which are almost parallel in the north direction. The northward flow fluctuations along the local isobaths were correlated with the northeastward wind fluctuations in both periodic bands, and these correlations were more evident from fall to winter. On the basis of these results, the northward flows are regarded as wind-induced barotropic coastal jets. On other hand, the eastward flow fluctuations across the local isobaths were related to inflow and outflow via the bay mouth or the Izushima Channel. Inflow and outflow with reverse flow at lower depths formed in summer, but those with vertically uniform flow tended to form in winter. The main summertime inflow and outflow were driven by horizontal gradients in density. These permit us to regard the main summertime inflow and outflow as gravitational circulation. Also, the summertime inflow can be intermittently caused by internal waves.  相似文献   
58.
This study investigates the distribution of boulders at Miyara Bay of Ishigaki Island, Japan. These boulders were deposited on a reef flat extending approximately 400–1300 m in width. Most boulders were rectangular to ellipsoidal, without sharp broken edges. They are reef and coral rock fragments estimated as <335 m3 (<633 t). Locally in the bay, the relationship between the boulder weight and position shows that boulders of a given weight have a clear limit on seaward distribution on the reef flat. For example, more than 1, 10, and 100 tons of boulders were deposited, respectively, more than 500, 300, and 100 m from the reef edge. The line is consistent with the possible landward transport limit by maximum storm waves at the Ryukyu Islands, suggesting that the line was formed by the reworking of some boulders by maximally strong storm waves, although we can not exclude the possibility that the line was formed by tsunamis. Furthermore, 68% of boulders at the bay are deposited beyond this line. Therefore, the presence of these boulders at their present positions is difficult to explain solely by storm waves, implying the possible tsunami origin of these boulders. The boulders are characteristically concentrated along the high‐tide line, suggesting the drastic reduction of the tsunami hydraulic force along the line. Previous studies using radiocarbon age dating, as well as our study, imply that at least 69 boulders at Miyara Bay were probably deposited at their present positions by the 1771 Meiwa tsunami, although some of these boulders might have been emplaced and displaced on the reef flat by prior tsunami or storm surges.  相似文献   
59.
Little research has examined whether forests reduce stream water eutrophication in agricultural areas during spring snowmelt periods. This study evaluated the role of forests in ameliorating deteriorated stream water quality in agricultural areas, including pasture, during snowmelt periods. Temporal variation in stream water quality at a mixed land‐use basin (565 ha: pasture 13%, forestry 87%), northern Japan, was monitored for 7 years. Synoptic stream water sampling was also conducted at 16 sites across a wide range of forest and agricultural areas in a basin (18.3 km2) in spring, summer and fall. Atmospheric nitrogen (N) and phosphorus (P) deposition were measured for 4 years. The results showed that concentration pulses of nitrate, organic N and total P in stream water were observed when discharge increased during spring snowmelt. Their concentrations were high when silicate concentrations were low, suggesting surface water exported from pasture largely contributed to stream water pollution during snowmelt. Atmospheric N and P deposition (4.1 kg N ha?1 y?1; 0.09 kg P ha?1 y?1, respectively) was too low to affect the background concentrations of N and P in streams from forested areas. Reduction of eutrophication caused by nutrients from pasture was mainly due to dilution by water containing low concentrations of N and P exported from forested areas, whereas in‐stream reduction was not a dominant process. Results indicate that forests have a limited capacity to reduce the concentration pulses of N and P in stream water during snowmelt in this study basin. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
60.
The processes underlying the development of the Kuroshio large meanders that occurred in 1986 and 1989 are investigated using a satellite SST data set and hydrographic data. In both processes visible on the satellite SST images, a round-shaped, lower SST region with a diameter of about 200 km is found to the east of the Kuroshio small “trigger” meander (Solomon, 1978) until the region became extinguished near theEnshu Nada. The lower SST region can be interpreted as an anti cyclonic eddy, mainly because of the existence of a warm water mass in the subsurface layer of this region. The warm water mass is characterized by a constant temperature of 18–19°C, the maximum thickness of which is about 400 m. The satellite images show that the eddy is closely related to the Kuroshio path transforming into a shape like the letter “S”. This means that the eddy plays an important role in the development of the Kuroshio large meander since this, too, tends to follow an “S”-shaped path. Added to this, the subsurface layer structure of the eddy is similar to that of the warm water mass offShikoku. This similarity, together with the eddy behavior visible on the satellite SST images, implies that the examined eddy corresponds to the warm water mass offShikoku. In other words, the warm water mass offShikoku can be advected near to theEnshu Nada when the Kuroshio large meander occurs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号