首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5247篇
  免费   775篇
  国内免费   492篇
测绘学   3089篇
大气科学   869篇
地球物理   615篇
地质学   781篇
海洋学   441篇
天文学   273篇
综合类   370篇
自然地理   76篇
  2024年   26篇
  2023年   98篇
  2022年   156篇
  2021年   197篇
  2020年   164篇
  2019年   252篇
  2018年   198篇
  2017年   206篇
  2016年   228篇
  2015年   253篇
  2014年   301篇
  2013年   243篇
  2012年   290篇
  2011年   308篇
  2010年   267篇
  2009年   281篇
  2008年   303篇
  2007年   249篇
  2006年   227篇
  2005年   174篇
  2004年   162篇
  2003年   167篇
  2002年   173篇
  2001年   181篇
  2000年   129篇
  1999年   129篇
  1998年   145篇
  1997年   140篇
  1996年   127篇
  1995年   113篇
  1994年   103篇
  1993年   95篇
  1992年   96篇
  1991年   78篇
  1990年   77篇
  1989年   85篇
  1988年   12篇
  1987年   12篇
  1986年   13篇
  1985年   14篇
  1984年   4篇
  1983年   6篇
  1982年   3篇
  1981年   2篇
  1980年   4篇
  1979年   3篇
  1965年   2篇
  1958年   2篇
  1957年   3篇
  1954年   3篇
排序方式: 共有6514条查询结果,搜索用时 218 毫秒
51.
针对Trimble RTX技术在呼伦湖水下地形测量中的应用测试,对比分析Trimble RTX技术较传统差分GNSS的优势,无需建立GNSS陆地基准站,单机作业便能大范围应用,同时提供厘米级的实时定位精度。应用结果证明Trimble RTX技术在大面积水域水下地形测量工作中具有稳定、高效、高精度的优势。  相似文献   
52.
系统评估了中国地区航天飞机雷达地形测绘任务(Shuttle Radar Topography Mision,SRTM)3″高程误差的分布及其与地形和地表覆盖因素的关系。通过单因子分析法,使用从50多万个样本点中提取的地表特征属性确定误差的变化规律。结果显示:SRTM高程误差与不同地形和地表覆盖类型关系密切;坡度增大误差由正变负,误差绝对值增大;正误差集中在偏北坡向,负误差集中在西南坡向;误差随植被覆盖增加而增大;冰川、沙漠、湿地区域误差整体为负,城镇建筑区的误差整体为正;坡度作为主导因素,同时影响其他因素对高程误差的作用。数据在某些区域存在明显高程异常,在平坦地区存在条带现象。整体上SRTM高程误差在中国地区呈现复杂的变化规律。  相似文献   
53.
为了分析云南元谋干热河谷典型冲沟插值误差的空间分布特征,采用反距离加权(inverse distance weighting,IDW)、局部多项式(local polynomial interpolation,LPI)、张力样条(spline with tension,ST)、析取克里格(disjunctive Kriging,DK)以及不规则三角网(triangulated irregular network,TIN)模型方法对高程采样点进行插值,用交叉验证法、相对差系数及沟谷线差异衡量其插值精度。遴选高程误差大于1 m的误差点,用变异系数(coefficient of variation,CV)、全局Moran指数和Getis-Ord Gi*指数分析其空间格局特征。结果表明:TIN和DK精度较高,IDW精度最低;高程误差均呈聚集分布,聚集程度TIN > LPI > DK > ST > IDW;高程误差均呈空间正自相关,TIN模型插值误差的自相关程度最高;误差热点位于坡度大的区域。  相似文献   
54.
目前,北斗全球卫星导航系统有5颗试验卫星发射试验信号。试验卫星数据质量分析是北斗全球系统信号体制验证的重要内容。基于单测站北斗试验卫星观测数据,采用伪距相位差组合和伪距多径组合方法,初步分析了试验卫星民用信号以及Bs频点信号伪距测量噪声和多径误差。结果表明,倾斜同步轨道卫星伪距测量精度优于中轨道卫星;在各导航信号中,B2a+b信号伪距测量精度最高,具有最优的抗多径性能;B1C信号伪距测量精度最低,抗多径性能最差;Bs信号伪距测量精度较差,但优于B1C信号,且其伪距多径存在一个与高度角相关的系统误差,在高度角最大时可达0.5 m。  相似文献   
55.
粗差探测拟准检定法的核心是拟准观测的选取。提出了L1范数和中位数相结合的方法选取拟准观测值,并设计了相应的准则。首先利用L1范数方法得到稳健的残差,将其中残差接近于零时对应的观测值直接确定为拟准观测值,然后将余下残差形成新的残差向量,并计算其绝对值的中位数,拟准观测值即为那些余下残差绝对值小于中位数所对应的观测值。GPS网平差和GPS单点定位计算结果表明本文提出的选取拟准观测值的方法有效可行。  相似文献   
56.
对搭载美国BlackJack接收机的CHAMP/GRACE-A/Jason-2卫星和搭载国产接收机的HY2A/ZY3/TH1卫星的星载GPS数据的伪距多路径误差与观测噪声进行了研究,重点分析了国产接收机伪距多路径误差的变化特性,并研究了多路径误差与观测噪声对星载GPS自主定轨的影响。结果表明:国产接收机的C/A码与P1码伪距观测精度要整体差于美国的BlackJack接收机,而P2码伪距观测精度要整体优于BlackJack接收机;国产接收机P1码伪距受多路径效应影响较大,其多路径误差随高度角减小存在单调递增的变化趋势,其中HY2A、ZY3与TH1卫星的多路径误差最大分别可达3.6 m、1.8 m与0.7 m;这种单调递增变化的多路径误差会导致星载GPS自主定轨位置结果在径向与切向产生系统性偏差。  相似文献   
57.
系统全面地分析并论证了国产推扫式测图卫星影像的几何精度,对卫星测图应用以及后续测绘卫星设计等都具有积极意义。从测图卫星几何成像机理出发,较为系统地分析了卫星成像过程中的轨道误差、姿态误差、时间误差、相机内部误差和星载设备安装误差等对卫星影像平面和高程几何定位误差的影响状况,定量分析并推导了各类误差源对影像几何精度的影响程度,设计并提出了国产推扫式测图卫星影像几何精度评估模型和方法。采用资源三号卫星立体影像开展实验,结果表明,所提出的影像几何精度评估模型获取的理论精度与实验精度符合度较好,模型具有合理性和科学性。  相似文献   
58.
轨道误差传播研究在空间碰撞风险分析、任务规划等空间态势感知领域具有重要作用。轨道误差常用误差协方差矩阵表达,其传播方式主要有线性传播模型与非线性传播模型两种。线性传播模型通过状态转移矩阵外推初始协方差矩阵,计算快速,但因将高度非线性化的轨道动力学问题线性化描述,导致传播精度随时间快速降低。非线性传播模型精度高但计算慢,难以进行大规模碎片群的轨道误差传播。在轨道误差传播特性分析的基础上,提出了一种获得较为真实的空间碎片轨道预报误差的方法,分3步进行:初始协方差矩阵的构建、初始轨道协方差线性传播以及基于实测数据对轨道预报协方差的动态校正。经大量案例统计分析,结果表明,校正后的轨道预报协方差,相较于线性传播结果,精度提高了60%以上,可服务于空间碰撞风险分析等高精度空间任务。  相似文献   
59.
ITRF中GNSS/SLR并址站归心基线的“一步解”   总被引:1,自引:1,他引:0  
马下平 《测绘学报》2018,47(1):64-70
提出将SLR望远镜的参考点和两轴偏差作为未知参数,在ITRF中联合并址站归心测量中GNSS基线网和地面网观测量(水平方向、垂直角和边长),建立SLR站观测设备的参考点与观测标志、观测标志之间、参考点和两轴偏差与其他未知参数之间的多种约束条件来求解归心基线的“一步解”。利用“一步解”解算出“陆态网络”中北京、昆明和西安3个GNSS/SLR并址站在ITRF2014中的归心基线及其协方差阵。结果显示:归心基线的中误差优于2 mm,与已有分步解相比,差值不超过2 mm;水平轴和垂直轴之间的偏差分别为3.8、0.7和3.6 mm,中误差分别为1.3、1.2和1.3 mm。  相似文献   
60.
针对一种基于地面激光扫描技术的高压线塔倾斜度监测方法,分析了利用水平分层的点云面片中心偏移量计算高压塔倾斜度的算法原理,以及该算法的误差来源。研究表明,利用水平截面法监测出线塔倾斜误差量主要与线塔的倾斜量及上下非对称特性有关。经过公式推导,建立了主倾斜剖面上的倾斜误差改正模型,并开发了专用的点云数据处理软件。结合山西开采沉陷区的倾斜高压线塔实例,利用本法计算了线塔的倾斜值,并将结果与特征点法计算结果进行了对比,验证了算法和数据处理程序的有效性和精度。本文内容对利用激光扫描技术监测烟囱、高塔等上小下大的非对称高耸结构的倾斜量有较强的借鉴意义。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号