首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   84篇
  免费   9篇
  国内免费   23篇
地球物理   16篇
地质学   35篇
海洋学   43篇
天文学   3篇
综合类   4篇
自然地理   15篇
  2023年   2篇
  2022年   5篇
  2021年   2篇
  2020年   3篇
  2019年   3篇
  2018年   4篇
  2017年   3篇
  2016年   2篇
  2015年   3篇
  2014年   6篇
  2013年   4篇
  2012年   6篇
  2011年   5篇
  2010年   6篇
  2009年   7篇
  2008年   6篇
  2007年   5篇
  2006年   7篇
  2005年   6篇
  2004年   8篇
  2003年   6篇
  2001年   1篇
  2000年   2篇
  1999年   1篇
  1998年   2篇
  1996年   1篇
  1993年   1篇
  1990年   1篇
  1986年   1篇
  1984年   1篇
  1983年   3篇
  1982年   2篇
  1978年   1篇
排序方式: 共有116条查询结果,搜索用时 31 毫秒
61.
Ammonia oxidation plays a significant role in the nitrogen cycle in marine sediments. Seasonal and spatial distribution of ammonia-oxidizing archaea(AOA) and betaproteobacteria(β-AOB) in surface sediments from the East China Sea(ECS) were investigated using ammonia monooxygenase α subunit(amo A) gene. In order to characterize the community of AOA and β-AOB, real-time quantitative polymerase chain reaction(q PCR) was carried out in this study, along with environmental parameters. The abundance of β-AOB amo A gene(2.17×106–4.54×107 copy numbers per gram wet weight sediment) was always greater than that of AOA amo A gene(2.18×105–9.89×106 copy numbers per gram wet weight sediment) in all sampling stations. The q PCR results were correlated with environmental parameters. AOA amo A gene copy numbers in April were positively related to temperature and nitrite concentration(p0.05). β-AOB amo A gene copy numbers in August correlated negatively with salinity(p0.01), and correlated positively with ammonium concentration(p0.05). With the increase of salinity, the amo A gene copy ratio of AOB to AOA had a tendency to decrease, which suggested β-AOB dominated in the area of high level ammonium and AOA preferred high salinity area.  相似文献   
62.
The combination of fluid inclusion analyses and microfossil analyses is an excellent method to study the preservation process of deep sub-seafloor microorganisms. By studying fluid inclusions in the same mineral phases as microfossils, it is possible to reconstruct the conditions that prevailed when the microorganisms where entombed and to put them in a geological and environmental context.This study has been performed on carbonate and gypsum veins in drilled basalt samples from three seamounts belonging to the Emperor Seamounts in the Pacific Ocean: Detroit, Nintoku and Koko Seamounts. The study show that variations in salt composition (MgCl2, NaCl, KCl and CaCl2) and salinity (2.1 and 10.5 eq. wt% NaCl) of the hydrothermal fluids do not have an influence on the occurrence of microfossils throughout the samples. The microorganisms were trapped and entombed at minimum temperatures of ∼130 °C which implies that the microorganisms could have existed at temperatures of ∼130 °C for shorter periods of time. The microorganisms were entrapped at shallow-marine to submarine conditions and the entrapment of the microorganisms occurred relatively late compared to the volcanic activity.  相似文献   
63.
Acid Mine Drainage (AMD) needs to be treated before it can be re-used or discharged in receiving water bodies due to the low pH, high salinity and high sulphate concentrations of the water. Several treatment methods are currently applied including chemical treatment (e.g. neutralisation of the low pH waters), physical treatment (e.g. reverse osmosis) and biological treatment to reduce the high sulphate concentration. When treating AMD biologically, sulphate reducing bacteria (SRB) reduce sulphate to sulphide, provided that a suitable and cost effective carbon and energy source is present. In the present study mine water was remediated biologically, using the degradation products of grass-cellulose, as carbon and energy sources for the sulphate reducing bacteria. A laboratory scale one stage anaerobic bioreactor (20 L volume) containing grass cuttings and biomass consisting of rumen fluid microorganisms and immobilized SRB, was initially fed with synthetic sulphate rich water and later with diluted AMD. The results indicated an average of 86% sulphate removal efficiency when feeding synthetic sulphate rich feed water to the reactor. When feeding diluted AMD, the highest sulphate removal efficiency was 78%. The sulphate removal was dependant on Chemical Oxygen Demand (COD) concentrations in the reactor. Increased COD concentrations were obtained when fresh grass was added to the reactor on a regular basis. Metal removal, especially iron, was observed due to the metal sulphide precipitates formed during biological sulphate removal.  相似文献   
64.
Energy is the key issue of all life activities.The energy source and energy yielding pathway are the key scientific issues of the origin and early evolution of life on Earth.Current researches indicate that the utilization of solar energy in large scale by life was an important breaking point of the early evolution of life on Earth and afterwards life gradually developed and flourished.However,in the widespread biochemical electron transfer of life activities,it is still not clear whether the electron source is sun or how electrons originated from sun.For billions of years,the ubiquitous semiconducting minerals in epigeosphere absorb solar energy,forming photoelectrons and photoholes.In reductive and weak acidic environment of early Earth,when photoholes were easily scavenged by reducing matters,photoelectrons were separated.Photoelectrons could effectively reduce carbon dioxide to organic matters,possibly providing organic matter foundation for the origin of life.Photoelectrons participated in photoelectron transfer chains driven by potential difference and transfer into primitive cells to maintain metabolisms.Semiconducting minerals,by absorbing ultraviolet,also protected primitive cells from being damaged by ultraviolet in the origin of life.Due to the continuous photoelectrons generation in semiconducting minerals and utilization by primitive cells,photoelectrons from semiconducting minerals’photocatalysis played multiple roles in the origin of life on early Earth,such as organic synthesis,cell protection,and energy supply.This mechanism still plays important roles in modern Earth surface systems.  相似文献   
65.
Microorganisms in permafrost can live in cold environments due to coadapted physicochemical processes in this environment. In this paper, the relation between microbial number and soil physicochemical properties at the headwaters area of the Urumqi River is analyzed by using fluorescence microscopy counting and oligo-culture techniques. In total, 20 samples from a 200-cm permafrost core were used as study materials. The study reveals that the number of culturable bacteria has a significantly positive correlation with soil water content, total carbon and total nitrogen concentrations, and a significantly negative correlation with soil pH value. In addition, the ratio of culturable bacteria to total cell number decreases with depths. The results demonstrate that the number of culturable bacteria in permafrost is closely correlated with soil physicochemical properties and depositional age.  相似文献   
66.
为全面获得青海湖嗜盐菌种质资源,构建种群系统发育树和确定种群进化定位.采用高盐选择性培养基筛选,分离从20份青海湖水样中获得35株青海湖嗜盐微生物.耐盐梯度实验表明:水体中以中度嗜盐菌为主,约占62.85%,轻度嗜盐菌约占22.85%,非嗜盐菌与耐盐菌约占14.28%.青海湖中度嗜盐微生物能在10~45℃,pH 5.5~11.0的范围内生长,与地区盐碱化环境相关,具有嗜盐兼嗜碱微生物的特性.  相似文献   
67.
Analysis of eight outcrops from Rarău Massif (Eastern Carpathians, Romania) revealed a rich assemblage of encrusting organisms mostly of problematic biological affiliation within platform-margin facies – Crescentiella morronensis, Radiomura cautica, Koskinobullina socialis, Pseudorothpletzella schmidi, Lithocodium aggregatum and bacinellid structures, encrusting calcified sponges (Calcistella jachenhausenensis, Neuropora lusitanica) and foraminifera (Coscinophragma cribrosa). Orbitolinids, calcareous green algae and rudists assign an early Aptian age (Bedoulian) for the studied limestones. In terms of species variety, abundance and structural microfabrics the studied microencruster association show similarity with the Upper Jurassic communities from reef and peri-reefal sedimentary settings. Comparisons with such assemblages are emphasized here. The presence of the sporolithacean and peyssonneliacean red algae (Sporolithon rude and Polystrata alba) contributes also to the construction of superimposed crusts. Even if the known stratigraphic range of the microencrusters is not strictly limited to the late Jurassic, reports of comparable associations in Urgonian-type facies is poorly documented. Therefore, it exemplifies the resistance and flourishing events of many encrusters throughout the Mesozoic.  相似文献   
68.
张丽珉  赵琳  丛柏林 《海洋学报》2018,40(8):152-164
为了利用南极微生物资源、探索南极罗斯海区域可培养微生物多样性,利用传统平板培养法对中国第33次南极科学考察采自南极罗斯海6个站位的海洋沉积物样品进行了细菌、真菌的分离培养。经细菌16S rRNA、真菌ITS基因序列检测及系统发育分析,共获得5个属的36株细菌和6个属的29株真菌。其中嗜冷杆菌属为优势细菌类群,枝孢属为优势真菌类群。该结果表明南极罗斯海区域具有丰富的微生物多样性。细菌API 20 NE生理生化及真菌产胞外酶活性实验显示,分离得到的细菌和真菌绝大多数都有低温酶活性。研究结果为南极罗斯海区域可培养微生物的多样性认识和低温酶产生菌资源获取与开发利用提供了支撑。  相似文献   
69.
D-乳酸及其酯是重要的手性药物中间体和手性化工产品。从南海深海芽孢杆菌Bacillus sp. SCSIO15029克隆到一个乙酰酯酶基因bae02030, 表达并鉴定该酶Bae02030的酶学性质。该酯酶的最适pH和最适温度分别为8.5和35℃, 其对多种有机溶剂和表面活性剂具有较好的耐受性。乙酰酯酶Bae02030能够通过水解拆分消旋乳酸甲酯来制备光学纯的D-乳酸甲酯。通过对拆分反应进行优化, 添加体积分数为60%的正庚烷能够改善乙酰酯酶Bae02030的光学选择性, 所制备的D-乳酸甲酯的对映体过量值(e.e.s)超过99%, 转化率(c)为56%。深海微生物来源的乙酰酯酶Bae02030作为生物催化剂在工业上制备手性药物中间体具有较好的应用潜力。  相似文献   
70.
Ecotoxicity of three potentially toxic metals (PTM) (Cu, Zn, and Cr) in a slightly acidic sandy soil is tested using the soil respiration test (OECD‐217) in order to determine EC50 values for the carbon transformation activity of microorganisms. Addition of an organic amendment of Populus leaves is also crossed with metal spiking in order to investigate possible interaction with metal toxicity. Soil respiration is measured at day 1 and 28 after the soil spiking with the PTM to assess short‐term effects on soil microbial activity. Of the three metals tested, Cu shows the highest toxicity at the longest exposure times (day 28) and Zn shows a strong inhibitory effect in the short‐term (day 1), even though later toxicity diminish significantly. Cr is the least toxic studied PTM. Organic amendment outweighs any adverse effects of these metals, increasing soil respiration, even in the treatments with high doses of metals.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号