首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   835篇
  免费   122篇
  国内免费   717篇
测绘学   3篇
地球物理   57篇
地质学   1493篇
海洋学   46篇
天文学   13篇
综合类   17篇
自然地理   45篇
  2024年   2篇
  2023年   8篇
  2022年   24篇
  2021年   44篇
  2020年   44篇
  2019年   51篇
  2018年   54篇
  2017年   76篇
  2016年   61篇
  2015年   55篇
  2014年   86篇
  2013年   92篇
  2012年   89篇
  2011年   70篇
  2010年   69篇
  2009年   78篇
  2008年   105篇
  2007年   70篇
  2006年   90篇
  2005年   62篇
  2004年   62篇
  2003年   44篇
  2002年   38篇
  2001年   27篇
  2000年   43篇
  1999年   25篇
  1998年   32篇
  1997年   37篇
  1996年   20篇
  1995年   24篇
  1994年   18篇
  1993年   16篇
  1992年   13篇
  1991年   10篇
  1990年   10篇
  1989年   10篇
  1988年   4篇
  1987年   2篇
  1986年   2篇
  1985年   2篇
  1984年   2篇
  1983年   1篇
  1977年   1篇
  1954年   1篇
排序方式: 共有1674条查询结果,搜索用时 484 毫秒
941.
The Neoproterozoic Ikorongo Group, which lies unconformably on the late Archaean Nyanzian Supergroup of the Tanzania Craton, is comprised of conglomerates, quartzites, shales, siltstones, red sandstones with rare flagstones and gritstones and is regionally subdivided into four litho-stratigraphic units namely the Makobo, Kinenge, Sumuji and Masati Formations.We report geochemical data for the mudrocks (i.e., shales and siltstones) from the Ikorongo basin in an attempt to constrain their provenance and source rock weathering. These mudrocks are compositionally similar to PAAS and PS indicating derivation from mixed mafic–felsic sources. However, the siltstones show depletion in the transition elements (Cr, Ni, Cu, Sc and V) and attest to a more felsic protolith than those for PAAS and PS. The Chemical Index of Alteration (CIA: 52–82) reveal a moderately weathered protolith for the mudrocks. The consistent REE patterns with LREE-enriched and HREE-depleted patterns ((La/Yb)CN = 7.3–38.3) coupled with negative Eu anomalies (Eu/Eu* = 0.71 on average), which characteristics are similar to the average PAAS and PS, illustrate cratonic sources that formed by intra-crustal differentiation.Geochemical considerations and palaeocurrent indications suggest that the provenance of the Ikorongo Group include high-Mg basaltic-andesites, dacites, rhyolites and granitoids from the Neoarchaean Musoma-Mara Greenstone Belt to the north of the Ikorongo basin. Mass balance calculations suggest relative contributions of 47%, 42% and 11% from granitoids, high-magnesium basaltic-andesites and dacites, respectively to the detritus that formed the shales. Corresponding contributions to the siltstones detritus are 53%, 43% and 4%.  相似文献   
942.
安徽铜官山铜-铁-金-硫矿床的地球化学特征   总被引:3,自引:0,他引:3       下载免费PDF全文
铜官山铜-铁-金-硫矿床发育上部层状矿体和下部网脉状矿体,地球化学特征呈现出明显的垂向变化和二元结构性.从下部网脉状矿化岩石到上部层状矿石,CaO、MgO、Fe2O3、FeO等含量和δ18O值总体逐渐增高,SiO2、Al2O3,、TiO2、K2O、Na2O、REE等含量和流体包裹体温度(341.9 ℃→178.0 ℃)及δ34S 值总体逐渐降低.黄铁矿δ34S值为( 2.1~ 7.9) ‰,上部层状块状矿石中方解石和石英δ18O平均值为 13.9‰,下部网脉状矿化岩(矿)石中脉石英或全岩δ18O平均值为 11.7‰.  相似文献   
943.
Nikolay Bonev  Grard Stampfli 《Lithos》2008,100(1-4):210-233
In the eastern Bulgarian Rhodope, mafic extrusive rocks and underlying greenschists are found in the Mesozoic low-grade unit, which represents the northern extension of similar sequences including the Evros ophiolites in Thrace (Greece). Both rock types define a suite of low-Ti tholeiitic basalts to transitional boninitic basaltic andesites and andesites and associated metapyroclastites (greenschists), intruded at its base by diorite dikes of a boninitic affinity. Mafic lavas and greenschists display large ion lithophile element (LILE) enrichment relative to high-field strength elements (HFSE), flat REE patterns of a slight light REE depletion, a strong island arc tholeiite (IAT) and weak MORB-like signature. All these rocks are characterized by negative Nb anomalies ascribed to arc lavas. They have positive Ndi values in the range of + 4.87 to + 6.09, approaching the lower limit of MORB-like source, and relatively high (207Pb/204Pb)i (15.57–15.663) at low (206Pb/204Pb)i (18.13–18.54) ratios. The Nd isotopic compositions coupled with trace element data imply a dominantly depleted MORB-like mantle source and a contribution of subduction modified LILE-enriched component derived from the mantle wedge. The diorite dike has a low Ndi value of − 2.61 and is slightly more Pb radiogenic (207Pb/204Pb)i (15.64) and (206Pb/204Pb)i (18.56), respectively, reflecting crustal contamination. Petrologic and geochemical data indicate that the greenschists and mafic extrusive rocks represent a magmatic assemblage formed in an island arc setting. The magmatic suite is interpreted as representing an island arc–accretionary complex related to the southward subduction of the Meliata–Maliac ocean under the supra-subduction back-arc Vardar ocean/island arc system. Magmatic activity appears to have initiated in the north during the inception of the island arc system by the Early–Middle Jurassic time in the eastern Rhodope that most likely graded to back-arc spreading southwards as represented by the Late Jurassic MORB-type Samothraki Island ophiolites. This tectonic scenario is further constrained by paleotectonic reconstructions. The arc–trench system collided with the Rhodope in the Late Jurassic times.  相似文献   
944.
Extensive magmatic activity developed at the northwestern part of the Anatolian block and produced basaltic lavas that are situated along and between the two segments of the North Anatolian Fault zone. This region is a composite tectonic unit formed by collision of continental fragments after consumption of Neotethyan ocean floor during the late Cretaceous. Northwestern Anatolian basalts and evolved lavas exhibit both tholeiitic and calc-alkaline characteristics. Mafic lavas are moderately enriched in LILE (except depleted part of Yuvacık and İznik samples) and depleted in HFSE (but not Zr, Hf) relative to primitive mantle values, suggesting derivation from a MORB-like mantle source that is unexpected in this subduction environment. Sr and Nd isotopes are close to the mantle array and vary beyond analytical error (87Sr/86Sr 0.70404–0.70546, 143Nd/144Nd 0.51270–0.51289). These geochemical features may result from two possible processes: (1) melting of a MORB-like mantle source that was modified by subduction-released fluids and melts or (2) modification of mafic liquids derived from a dominantly MORB-like source by crustal or lithospheric mantle material. Geochemical characteristics of the lavas (e.g., Ba/Rb, Rb/Sr, Ba/Zr, 87Sr/86Sr, Sr/P) vary systematically along the fault zone from east to west, consistent with a decrease in the degree of melting from east to west or a change in the nature of the source composition itself. Thus, the difference in incompatible elements and Sr–Nd isotopic ratios seems to result from small-scale mantle heterogeneity in a post-collisional tectonic environment.  相似文献   
945.
Three types of eclogite, together with a serpentinized harzburgite, coexist as blocks within granitic and pelitic gneisses along the Shaliuhe cross section, the eastern part of the North Qaidam continental-type ultrahigh-pressure (UHP) metamorphic belt, NW China. The olivine (Ol1) and orthopyroxene in the harzburgite are compositionally similar to present-day abyssal peridotites. The kyanite–eclogite is derived from a troctolitic protolith, whereas the epidote–eclogite from a gabbroic protolith, both having distinct positive Eu anomalies, low TiO2, and high Al2O3 and MgO. The kyanite–eclogite shows inherited cumulate layering. The phengite–eclogite has high TiO2, low Al2O3 and MgO with incompatible trace elements resembling enriched-type MORB. Sr–Nd isotope data indicate that the protoliths of both kyanite–eclogite and epidote–eclogite ([87Sr/86Sr]i ~ 0.703–0.704; εNd(T) ~ 5.9–8.0) are of mantle origin (e.g., ocean crust signatures). On the other hand, while the lower εNd(T) value (1.4–4.1) of phengite–eclogite is more or less consistent with an enriched MORB protolith, their high [87Sr/86Sr]i ratio (0.705–0.716) points to an additional enrichment in their history, probably in an subduction-zone environment. Field relations and geochemical analyses suggest that the serpentinized harzburgite and the three types of eclogite constitute the oceanic lithological section of an ophiolitic sequence from mantle peridotite, to cumulate, and to upper basaltic rocks. The presence of coesite pseudomorphs and quartz exsolution in omphacite plus thermobarometric calculations suggests that the eclogites have undergone ultrahigh pressure metamorphism (i.e., peak P ≥ 2.7 GPa). The harzburgite may also have experienced the same metamorphism, but the lack of garnet suggests that the pressure conditions of ≤ 3.0 GPa. Zircon U–Pb SHRIMP dating shows that the eclogites have a protolith age of 516 ± 8 Ma and a metamorphic age of 445 ± 7 Ma. These data indicate the presence of a Paleo-Qilian Ocean between Qaidam and Qilian blocks before the early Ordovician. The ophiolitic assemblage may be the relics of subducted oceanic crust prior to the subduction of continental materials during Ordovician–Silurian times and ultimate continent collision. These rocks, altogether, record a complete history of ocean crust subduction, to continental subduction, and to continental collision.  相似文献   
946.
Two groups of granitoids associated with gold mineralization in the Appalachian orogen of southwestern New Brunswick are recognized: a Late Silurian to Early Devonian (423–396 Ma) granodioritic to monzogranitic series (GMS), and a Late Devonian (370–360 Ma) granitic series (GS). The GMS granitoids are relatively low in silica, calc-alkaline, metaluminous to weakly peraluminous, and show characteristics of normal (oxidized) to reduced I-type granites depending on the properties of country rocks. They may have been derived from partial melting of lower crustal rocks triggered by underplated basaltic magmas; and country rocks bearing reduced organic carbon and/or graphite may have played an important role in the reduction of normal I-type intrusions to reduced I-type, which is essential in the formation of intrusion-related gold systems. In contrast, the GS granites, although calc-alkaline and metaluminous to peraluminous, are relatively rich in silica, incompatible elements, and high field strength elements. They are fractionated I-type granites, and are probably related to the coeval Mount Douglas granite in the Saint George batholith through fractional crystallization. Their parental magmas may have been derived from partial melting of quartzofeldspathic sources at relatively low temperatures. Both GMS and GS intrusions are orogenic, although some of them display the affinity of those emplaced into a within-plate environment. The origin of intrusion-related gold systems in this region appears to be controlled by several factors, including magma sources, magmatic processes, redox conditions (country-rock nature), and local structural regimes.  相似文献   
947.
We study the aggradation and incision of the Alaknanda River Valley during the late Pleistocene and Holocene. The morphostratigraphy in the river valley at Deoprayag shows the active riverbed, a cut terrace, and a fill terrace. The sedimentary fabric of the fill terrace comprises four lithofacies representing 1) riverbed accretion, 2) locally derived debris fan, 3) the deposits of waning floods and 4) palaeoflood records. The sedimentation style, coupled with geochemical analysis and Optically Stimulated Luminescence (OSL) dating, indicate that this terrace formed in a drier climate and the river valley aggraded in two phases during 21–18 ka and 13–9 ka. During these periods, sediment supply was relatively higher. Incision began after 10 ka in response to a strengthened monsoon and aided by increase of the tectonic gradient. The cut terrace formed at ~ 5 ka during a phase of stable climate and tectonic quiescence. The palaeoflood records suggest wetter climate 200–300 yr ago when the floods originated in the upper catchment of the Higher Himalaya and in the relatively drier climate ~ 1.2 ka when locally derived sediments from the Lesser Himalaya dominated flood deposits. Maximum and minimum limits of bedrock incision rate at Deoprayag are 2.3 mm/a and 1.4 mm/a.  相似文献   
948.
Selenium concentrations were measured in five rock cores from a mine in Boone County, West Virginia to determine their relationship to sulfur, rock type and stratigraphic location. The samples spanned the Winifrede and Coalburg coal beds of the Middle Pennsylvania upper Kanawha Formation and included coals and clastic lithologies. The coals generally contained the highest concentrations of Se and the sandstones the lowest. No correlation was observed between total Se and sulfur concentrations for either the entire data set or for individual lithologies. Better correlations were identified for log concentrations between total Se and total organic carbon. Principal component analysis identified a strong sulfur–acid component, interpreted to be due to sulfide mineral presence, which correlates well with S but not with Se. Coal sample chemistry is more likely to load onto this component while clastic rock chemistry is more likely to load onto the second, non-sulfur component. Se concentrations load onto both components indicating they are not controlled by a single overriding chemistry. Selective extractions indicate that Se is distributed between both sulfide and organically-bound fractions, as defined by the test. Overall, the lack of correlation between Se and S, the distribution of Se among extracted fractions, and the loading of Se onto both sulfur and non-sulfur components support that the Se in these rock layers is distributed in more than one chemically-bound form. Non-coal rock units with the highest concentrations of Se were found adjacent to coal beds, suggesting that redistribution of Se may have occurred post-deposition. The acidic domed swamps that formed these coals were low in sulfur and a reasonable chemical setting to accumulate Se if it were introduced. The preservation of Se in the domed swamp peat coupled with post-depositional redistribution may partly explain the data presented.  相似文献   
949.
950.
The eastern part of the Cordillera Occidental of Ecuador comprises thick buoyant oceanic plateaus associated with island-arc tholeiites and subduction-related calc-alkaline series, accreted to the Ecuadorian Continental Margin from Late Cretaceous to Eocene times. One of these plateau sequences, the Guaranda Oceanic Plateau is considered as remnant of the Caribbean–Colombian Oceanic Province (CCOP) accreted to the Ecuadorian Margin in the Maastrichtien.Samples studied in this paper were taken from four cross-sections through two arc-sequences in the northern part of the Cordillera Occidental of Ecuador, dated as (Río Cala) or ascribed to (Macuchi) the Late Cretaceous and one arc-like sequence in the Chogòn-Colonche Cordillera (Las Orquídeas). These three island-arcs can clearly be identified and rest conformably on the CCOP.In all four localities, basalts with abundant large clinopyroxene phenocrysts can be found, mimicking a picritic or ankaramitic facies. This mineralogical particularity, although not uncommon in island arc lavas, hints at a contribution of the CCOP in the genesis of these island arc rocks.The complete petrological and geochemical study of these rocks reveals that some have a primitive island-arc nature (MgO values range from 6 to 11 wt.%). Studied samples display marked Nb, Ta and Ti negative anomalies relative to the adjacent elements in the spidergrams characteristic of subduction-related magmatism. These rocks are LREE-enriched and their clinopyroxenes show a tholeiitic affinity (FeOT–TiO2 enrichment and CaO depletion from core to rim within a single crystal).The four sampled cross-sections through the island-arc sequences display homogeneous initial Nd, and Pb isotope ratios that suggest a unique mantellic source for these rocks resulting from the mixing of three components: an East-Pacific MORB end-member, an enriched pelagic sediment component, and a HIMU component carried by the CCOP. Indeed, the ankaramite and Mg-basalt sequences that form part of the Caribbean-Colombian Oceanic Plateau are radiogenically enriched in 206Pb/204Pb and 207Pb/204Pb and contain a HIMU component similar to that observed in the Gorgona basalts and Galápagos lavas. The subduction zone that generated the Late Cretaceous arcs occurred far from the continental margin, in an oceanic environment. This implies that no terrigenous detrital sediments interacted with the source at this period. Thus, the enriched component can only result from the melting of subducted pelagic sediments.We have thus defined the East-Pacific MORB, enriched (cherts, pelagic sediments) and HIMU components in an attempt to constrain and model the genesis of the studied island-arc magmatism, using a compilation of carefully selected isotopic data from literature according to rock age and paleogeographic location at the time of arc edification.Tripolar mixing models reveal that proportions of 12–15 wt.% of the HIMU component, 7–15 wt.% of the pelagic sediment end-member and 70–75 wt.% of an East-pacific MORB end-member are needed to explain the measured isotope ratios. These surprisingly high proportions of the HIMU/CCOP component could be explained by the young age of the oceanic plateau (5–15 Ma) during the Late Cretaceous arc emplacement. The CCOP, basement of these arc sequences, was probably still hot and easily assimilated at the island-arc lava source.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号