首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   31595篇
  免费   7346篇
  国内免费   8488篇
测绘学   1855篇
大气科学   9935篇
地球物理   7866篇
地质学   12541篇
海洋学   4364篇
天文学   6012篇
综合类   1948篇
自然地理   2908篇
  2024年   99篇
  2023年   456篇
  2022年   958篇
  2021年   1202篇
  2020年   1240篇
  2019年   1521篇
  2018年   1245篇
  2017年   1309篇
  2016年   1348篇
  2015年   1527篇
  2014年   2068篇
  2013年   2317篇
  2012年   2251篇
  2011年   2348篇
  2010年   2096篇
  2009年   2716篇
  2008年   2478篇
  2007年   2800篇
  2006年   2567篇
  2005年   2105篇
  2004年   1867篇
  2003年   1628篇
  2002年   1304篇
  2001年   1162篇
  2000年   1051篇
  1999年   965篇
  1998年   799篇
  1997年   626篇
  1996年   584篇
  1995年   482篇
  1994年   455篇
  1993年   455篇
  1992年   295篇
  1991年   251篇
  1990年   180篇
  1989年   150篇
  1988年   125篇
  1987年   70篇
  1986年   50篇
  1985年   58篇
  1984年   41篇
  1983年   29篇
  1982年   30篇
  1981年   18篇
  1980年   22篇
  1979年   13篇
  1978年   21篇
  1977年   27篇
  1954年   14篇
  1875年   1篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
Wildfire increases the potential connectivity of runoff and sediment throughout watersheds due to greater bare soil, runoff and erosion as compared to pre-fire conditions. This research examines the connectivity of post-fire runoff and sediment from hillslopes (< 1.5 ha; n = 31) and catchments (< 1000 ha; n = 10) within two watersheds (< 1500 ha) burned by the 2012 High Park Fire in northcentral Colorado, USA. Our objectives were to: (1) identify sources and quantify magnitudes of post-fire runoff and erosion at nested hillslopes and watersheds for two rain storms with varied duration, intensity and antecedent precipitation; and (2) assess the factors affecting the magnitude and connectivity of runoff and sediment across spatial scales for these two rain storms. The two summer storms that are the focus of this research occurred during the third summer after burning. The first storm had low intensity rainfall over 11 hours (return interval <1–2 years), whereas the second event had high intensity rainfall over 1 hour (return interval <1–10 years). The lower intensity storm was preceded by high antecedent rainfall and led to low hillslope sediment yields and channel incision at most locations, whereas the high intensity storm led to infiltration-excess overland flow, high sediment yields, in-stream sediment deposition and channel substrate fining. For both storms, hillslope-to-stream sediment delivery ratios and area-normalised cross-sectional channel change increased with the percent of catchment that burned at high severity. For the high intensity storm, hillslope-to-stream sediment delivery ratios decreased with unconfined channel length (%). The findings quantify post-fire connectivity and sediment delivery from hillslopes and streams, and highlight how different types of storms can cause varying magnitues and spatial patterns of sediment transport and deposition from hillslopes through stream channel networks.  相似文献   
2.
Numerous efforts have been made to understand stemflow dynamics under different types of vegetation at the inter-event scale, but few studies have explored the stemflow characteristics and corresponding influencing factors at the intra-event scale. An in-depth investigation of the inter- and intra-event dynamics of stemflow is important for understanding the ecohydrological processes in forest ecosystems. In this study, stemflow volume (FV), stemflow funnelling ratio (FR), and stemflow ratio (F%) from Quercus acutissima and Broussonetia papyrifera trees were measured at both inter- and intra-event scales in a subtropical deciduous forest, and the driving factors, including tree species and meteorological factors were further explored. Specifically, the FV, FR and F% of Q. acutissima (52.3 L, 47.2, 9.6%) were lower than those of B. papyrifera (85.1 L, 91.2, 12.4%). The effect of tree species on FV and F% was more obvious under low intensity rainfall types. At the inter-event scale, FV had a strong positive linear correlation with rainfall amount (GP) and event duration (DE) for both tree species, whereas FR and F% had a positive logarithmic correlation with GP and DE only under high-intensity, short-duration rainfall type. FR and F% were mainly affected by wind speed and the maximum 30-min rainfall intensity under low-intensity, long-duration rainfall type. At the intra-event scale, for both tree species, the mean lag time between the start of rainfall and stemflow was the shortest under high-intensity, short-duration rainfall type, while the mean duration and amount of stemflow after rain cessation were the greatest under high-amount, long-duration rainfall type. The relationship between stemflow intensity and rainfall intensity at the 5-min interval scale also depended greatly on rainfall type. These findings can help clarify stemflow dynamics and driving factors at both inter- and intra-event scales, and also provide abundant data and parameters for ecohydrological simulations in subtropical forests.  相似文献   
3.
Dissolved pollutants in stormwater are a main contributor to water pollution in urban environments. However, many existing transport models are semi-empirical and only consider one-dimensional flows, which limit their predictive capacity. Combining the shallow water and the advection–diffusion equations, a two-dimensional physically based model is developed for dissolved pollutant transport by adopting the concept of a ‘control layer’. A series of laboratory experiments has been conducted to validate the proposed model, taking into account the effects of buildings and intermittent rainfalls. The predictions are found to be in good agreement with experimental observations, which supports the assumption that the depth of the control layer is constant. Based on the validated model, a parametric study is conducted, focusing on the characteristics of the pollutant distribution and transport rate over the depth. The hyetograph, including the intensity, duration and intermittency, of rainfall event has a significant influence on the pollutant transport rates. The depth of the control layer, rainfall intensity, surface roughness and area length are dominant factors that affect the dissolved pollutant transport. Finally, several perspectives of the new pollutant transport model are discussed. This study contributes to an in-depth understanding of the dissolved pollutant transport processes on impermeable surfaces and urban stormwater management.  相似文献   
4.
Water flow velocity is an important hydraulic variable in hydrological and soil erosion models, and is greatly affected by freezing and thawing of the surface soil layer in cold high-altitude regions. The accurate measurement of rill flow velocity when impacted by the thawing process is critical to simulate runoff and sediment transport processes. In this study, an electrolyte tracer modelling method was used to measure rill flow velocity along a meadow soil slope at different thaw depths under simulated rainfall. Rill flow velocity was measured using four thawed soil depths (0, 1, 2 and 10 cm), four slope gradients (5°, 10°, 15° and 20°) and four rainfall intensities (30, 60, 90 and 120 mm·h−1). The results showed that the increase in thawed soil depth caused a decrease in rill flow velocity, whereby the rate of this decrease was also diminishing. Whilst the rill flow velocity was positively correlated with slope gradient and rainfall intensity, the response of rill flow velocity to these influencing factors varied with thawed soil depth. The mechanism by which thawed soil depth influenced rill flow velocity was attributed to the consumption of runoff energy, slope surface roughness, and the headcut effect. Rill flow velocity was modelled by thawed soil depth, slope gradient and rainfall intensity using an empirical function. This function predicted values that were in good agreement with the measured data. These results provide the foundation for a better understanding of the effect of thawed soil depth on slope hydrology, erosion and the parameterization scheme for hydrological and soil erosion models.  相似文献   
5.
Average velocity in streams is a key variable for the analysis and modelling of hydrological and hydraulic processes underpinning water resources science and practice. The present study evaluates the impact of the sampling duration on the quality of average velocity measurements acquired with contemporary instruments such as Acoustic Doppler Velocimeters (ADV) an Acoustic Doppler Current Profilers (ADCP). The evaluation combines considerations on turbulent flows and principles and configurations of acoustic instruments with practical experience in conducting customized analysis for uncertainty analysis purposes. The study sheds new insights on the spatial and temporal variability of the uncertainty in the measurement of average velocities due to variable sampling durations acting in isolation from other sources of uncertainties. Sampling durations of 90 and 150 s are found sufficient for ADV and ADCP, respectively, to obtain reliable average velocities in a flow affected only by natural turbulence and instrument noise. Larger sampling durations are needed for measurements in most of the natural streams exposed to additional sources of data variability.  相似文献   
6.
地震定位对速度模型的依赖性很强.四川地区地形复杂,常规工作中可选取多种速度模型进行定位.川西龙门山断裂带为东南部四川盆地和西北部青藏高原东部山区的明显分界线,近年在此断裂带上发生多次较大地震.对发生在该断裂带附近的6个爆破事件和15个天然地震重新定位,并对比结果.研究表明,相同台站包围情况下,川滇3D速度模型稳定性最好,但对浅表爆破不太准确.相比HypoSat(一维速度模型)组合,台站分布对Hypo2000(一维速度模型)和Hypo2000(赵珠速度模型)组合的定位结果影响较大.  相似文献   
7.
Atmospheric dust is an integral component of the Earth system with major implications for the climate, biosphere and public health. In this context, identifying and quantifying the provenance and the processes generating the various types of dust found in the atmosphere is paramount. Isotopic signatures of Pb, Nd, Sr, Zn, Cu and Fe are commonly used as sensitive geochemical tracers. However, their combined use is limited by the lack of (a) a dedicated chromatographic protocol to separate the six elements of interest for low‐mass samples and (b) specific reference materials for dust. Indeed, our work shows that USGS rock reference materials BHVO‐2, AGV‐2 and G‐2 are not applicable as substitute reference materials for dust. We characterised the isotopic signatures of these six elements in dust reference materials ATD and BCR‐723, representatives of natural and urban environments, respectively. To achieve this, we developed a specific procedure for dust, applicable in the 4–25 mg mass range, to separate the six elements using a multi‐column ion‐exchange chromatographic method and MC‐ICP‐MS measurements.  相似文献   
8.
通过对东海陆架盆地某凹陷取心井岩心仔细观察和描述,采用双属性划分标准,在研究区花港组岩心中识别出了28种岩石相类型.其中砾岩相5种,砂岩相15种,细粒岩相8种.针对22口取心井岩心详细划分沉积微相和岩石相,共取得2227个岩石相数据.针对研究区发育的湖泊、三角洲、河流3种沉积体系,运用马尔科夫链分析不同沉积微相类型中岩石相沉积序列模式,建立了不同沉积微相类型可能的岩石相组合规律及岩石相定量组合概率,为后期研究相同或相似类型的沉积相提供地质知识库,并为沉积相的识别提供定量的基础.  相似文献   
9.
基于地缘政治视角,分析本世纪初发生在原苏联地区“颜色革命”的诱发因素,认为美国根据其地缘战略格局对“颜色革命”发生地存在一定程度的主观选择性,国家内部经济、政治、社会等层面的矛盾也同样作为发生背景。在中亚地缘格局动态分析的基础上,结合中亚五国形势,从时间和空间双重维度对中亚地区未来发生“颜色革命”的可能性进行识别与评判,得出1) 整体来看,中亚近期内爆发“颜色革命”可能性较小,但从长远来看不能掉以轻心。2)土、乌未来稳定可期,塔、吉、哈需谨防“颜色革命”卷土重来。  相似文献   
10.
首先利用ALOS PALSAR数据,通过D-InSAR技术获取2007-06-03云南宁洱MS6.4地震的同震形变场,然后基于Okada弹性半空间位错模型反演该地震的断层几何以及精细滑动分布,最后计算宁洱地震后周边断层的静态库仑应力变化。结果表明,形变主要集中在西盘,最大视线向形变量为51.6 cm;反演得到的震源位置为23.05°N、101.02°E,深度3 km,断层走向145°,倾向49.5°,平均滑动角153°,发震断层为NNW向普洱断裂,断层活动以右旋走滑为主,兼具逆冲分量;断层面最大滑动量为1.2 m,反演得到的震级为MW619。基于库仑应力场发现,磨黑断裂处于库仑应力增加区域,而2014年景谷地震位于负值区域。结合实地考察资料和反演结果表明,宁洱地震为浅源地震,但断层并未出露地表。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号