首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   24439篇
  免费   4401篇
  国内免费   6769篇
测绘学   938篇
大气科学   4627篇
地球物理   4032篇
地质学   12910篇
海洋学   2829篇
天文学   5152篇
综合类   1290篇
自然地理   3831篇
  2024年   63篇
  2023年   286篇
  2022年   775篇
  2021年   927篇
  2020年   1028篇
  2019年   1153篇
  2018年   1040篇
  2017年   924篇
  2016年   1079篇
  2015年   1175篇
  2014年   1656篇
  2013年   1807篇
  2012年   1709篇
  2011年   1924篇
  2010年   1768篇
  2009年   2157篇
  2008年   1990篇
  2007年   2067篇
  2006年   1938篇
  2005年   1648篇
  2004年   1428篇
  2003年   1204篇
  2002年   999篇
  2001年   874篇
  2000年   715篇
  1999年   655篇
  1998年   539篇
  1997年   334篇
  1996年   278篇
  1995年   252篇
  1994年   234篇
  1993年   230篇
  1992年   143篇
  1991年   118篇
  1990年   89篇
  1989年   78篇
  1988年   71篇
  1987年   28篇
  1986年   34篇
  1985年   40篇
  1984年   35篇
  1983年   21篇
  1982年   23篇
  1981年   17篇
  1980年   17篇
  1979年   4篇
  1978年   9篇
  1977年   16篇
  1976年   2篇
  1973年   2篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
Systematic variations in atmospheric heat exchange, surface residence time, and groundwater influx across montane stream networks commonly produce an increasing stream temperature trend with decreasing elevation. However, complex stream temperature profiles that differ from this common longitudinal trend also exist, suggesting that stream temperatures may be influenced by complex interactions among hydrologic and atmospheric processes. Lakes within stream networks form one potential source of temperature profile complexity due to the spatially variable contribution of lake-sourced water to stream flow. We investigated temperature profile complexity in a multi-season stream temperature dataset collected across a montane stream network containing many alpine lakes. This investigation was performed by making comparisons between multiple statistical models that used different combinations of stream and lake characteristics to represent specific hypotheses for the controls on stream temperature. The compared models included a set of models which used a topographically derived estimate of the hydrologic influence of lakes to separate and quantify the effects of stream elevation and lake source-water contributions to longitudinal stream temperature patterns. This source-water mixing model provided a parsimonious explanation for complex stream-network temperature patterns in the summer and autumn, and this approach may be further applicable to other systems where stream temperatures are influenced by multiple water sources. Simpler models that discounted lake effects were more optimal during the winter and spring, suggesting that complex patterns in stream temperature profiles may emerge and subside temporally, across seasons, in response to diversity of water temperatures from different sources.  相似文献   
2.
We introduce the freely available web-based Water in an Agricultural Landscape—NUčice Database (WALNUD) dataset that includes both hydrological and meteorological records at the Nučice experimental catchment (0.53 km2), which is representative of an intensively farmed landscape in the Czech Republic. The Nučice experimental catchment was established in 2011 for the observation of rainfall–runoff processes, soil erosion processes, and water balance of a cultivated landscape. The average altitude is 401 m a.s.l., the mean land slope is 3.9%, and the climate is humid continental (mean annual temperature 7.9°C, annual precipitation 630 mm). The catchment is drained by an artificially straightened stream and consists of three fields covering over 95% of the area which are managed by two different farmers. The typical crops are winter wheat, rapeseed, and alfalfa. The installed equipment includes a standard meteorological station, several rain gauges distributed across the basin, and a flume with an H-type facing that is used to monitor stream discharge, water turbidity, and basic water quality indicators. Additionally, the groundwater level and soil water content at various depths near the stream are recorded. Recently, large-scale soil moisture monitoring efforts have been introduced with the installation of two cosmic-ray neutron sensors for soil moisture monitoring. The datasets consist of observed variables (e.g. measured precipitation, air temperature, stream discharge, and soil moisture) and are available online for public use. The cross-seasonal, open access datasets at this small-scale agricultural catchment will benefit not only hydrologists but also local farmers.  相似文献   
3.
Water flow velocity is an important hydraulic variable in hydrological and soil erosion models, and is greatly affected by freezing and thawing of the surface soil layer in cold high-altitude regions. The accurate measurement of rill flow velocity when impacted by the thawing process is critical to simulate runoff and sediment transport processes. In this study, an electrolyte tracer modelling method was used to measure rill flow velocity along a meadow soil slope at different thaw depths under simulated rainfall. Rill flow velocity was measured using four thawed soil depths (0, 1, 2 and 10 cm), four slope gradients (5°, 10°, 15° and 20°) and four rainfall intensities (30, 60, 90 and 120 mm·h−1). The results showed that the increase in thawed soil depth caused a decrease in rill flow velocity, whereby the rate of this decrease was also diminishing. Whilst the rill flow velocity was positively correlated with slope gradient and rainfall intensity, the response of rill flow velocity to these influencing factors varied with thawed soil depth. The mechanism by which thawed soil depth influenced rill flow velocity was attributed to the consumption of runoff energy, slope surface roughness, and the headcut effect. Rill flow velocity was modelled by thawed soil depth, slope gradient and rainfall intensity using an empirical function. This function predicted values that were in good agreement with the measured data. These results provide the foundation for a better understanding of the effect of thawed soil depth on slope hydrology, erosion and the parameterization scheme for hydrological and soil erosion models.  相似文献   
4.
To enhance the utilization efficiency of farmland irrigation water and reduce the leakage of water conveyance channels, the leakage process of channels was simulated dynamically. The simulated results were compared with data measured in laboratory experiments, and the performance of the model was evaluated. The results indicated that the simulated values of the model were consistent with the observation values, and the R2 values varied between 0.91 and 0.99. In addition, based on the laboratory experiments, a water supply system (Mariotte bottles) and soil box were built using plexiglass. Three influencing factors, namely, the channel form, soil texture and channel cross-sectional area, were varied to observe and calculate the resulting cumulative infiltration amount, infiltration rate and wetting front migration distance. HYDRUS-3D software was used to solve the three-dimensional soil water movement equation under different initial conditions. The results demonstrated that the U-shaped channel was more effective than the trapezoidal channel in increasing the utilization efficiency of the water resources. A U-shaped channel with a small channel cross-sectional area should be adopted and the soil particle size should be prioritized in the construction of water conveyance channels for farmlands. The simulation results were in agreement with the observed results, which indicates that HYDRUS-3D is a reliable tool that can accurately simulate the soil moisture movement in water conveyance channels. The research results can provide a reference for the design and operation of farmland irrigation systems.  相似文献   
5.
The Bear Brook Watershed in Maine (BBWM) is a long-term research site established to study the response of forest ecosystem function to environmental disturbances of chronic acidic deposition and ecosystem nitrogen enrichment. Starting in 1989, the West Bear (treated) watershed received bimonthly applications of ammonium sulfate [(NH4)2SO4] fertilizer from above the canopy, whereas East Bear (reference) received ambient deposition. The treatments were stopped in 2016, marking the beginning of the recovery phase. Research at the site has focused on soils, streams, and vegetation. Here, we describe data collected over three decades at the BBWM—input and stream output nutrient fluxes, quantitative soil pits and soil chemistry, and soil temperature and moisture.  相似文献   
6.
Active wildfire seasons in the western U.S. warrant the evaluation of post-fire forest management strategies. Ground-based salvage logging is often used to recover economic loss of burned timber. In unburned forests, ground-based logging often follows best management practices by leaving undisturbed areas near streams called stream buffers. However, the effectiveness of these buffers has not been tested in a post-wildfire setting. This experiment tested buffer width effectiveness with a novel field-simulated rill experiment using sediment-laden runoff (25 g/L) released over 40 min at evenly timed flow rates (50, 100 and 150 L/min) to measure surface runoff travel length and sediment concentration under unburned and high and low soil burn severity conditions at 2-, 10- and 22-month post-fire. High severity areas 2-month post-fire had rill lengths of up to 100 m. Rill length significantly decreased over time as vegetation regrowth provided ground cover. Sediment concentration and sediment dropout rate also varied significantly by soil burn severity. Sediment concentrations were 19 g/L for the highest flow 2-month post-fire and reduced to 6.9–14 g/L 10-month post-fire due to abundant vegetation recovery. The amount of sediment dropping out of the flow consistently increased over the study period with the low burn severity rate of 1.15 g L−1 m−1 approaching the unburned rate of 1.29 g L−1 m−1 by 2-year post-fire. These results suggest that an often-used standard, 15 m buffer, was sufficient to contain surface runoff and reduce sediment concentration on unburned sites, however buffers on high burn severity sites need to be eight times greater (120 m) immediately after wildfire and four times greater (60 m) 1-year post-fire. Low burn severity areas 1-year post-fire may need to be only twice the width of an unburned buffer (30 m), and 2-year post-fire these could return to unburned widths.  相似文献   
7.
地温变化在气候反馈效应中起着重要作用, 理解地温及其与影响因素之间的时空关系对预测全球温度变化至关重要。利用1998 - 2017年石羊河流域的逐日常规气象观测资料, 采用小波分析结合BP(Back Propagation)神经网络构建了石羊河流域夏季地温预报模型, 结果表明: 日平均地温预测效果在不同站点均为最佳, 其中预测值和观测值的相关系数均大于0.87, 3 ℃以内的预测概率均大于84%。其中, 民勤地区地温预测效果最好, 预测值和观测值的相关系数达到0.91, 3 ℃以内的预测概率达到86%。日最高地温的预测值与观测值的相关系数高于0.8, 但误差平方和、 标准差较大。永昌地区日最高地温的模拟效果最好, 3 ℃以内的预测概率达到83%。日最低地温的预测与观测值的平均相关系数高于0.66, 3 ℃以内的预报概率高于83%, 但预测值略低。其中, 武威地区日最低地温的预测效果最好, 预测值与观测值的相关系数为0.72, 3 ℃以内的预测概率达到94%。研究成果可为有效弥补干旱、 半干旱区地温观测资料缺失和探讨其与局地气候的关系提供一些参考。  相似文献   
8.
Atmospheric dust is an integral component of the Earth system with major implications for the climate, biosphere and public health. In this context, identifying and quantifying the provenance and the processes generating the various types of dust found in the atmosphere is paramount. Isotopic signatures of Pb, Nd, Sr, Zn, Cu and Fe are commonly used as sensitive geochemical tracers. However, their combined use is limited by the lack of (a) a dedicated chromatographic protocol to separate the six elements of interest for low‐mass samples and (b) specific reference materials for dust. Indeed, our work shows that USGS rock reference materials BHVO‐2, AGV‐2 and G‐2 are not applicable as substitute reference materials for dust. We characterised the isotopic signatures of these six elements in dust reference materials ATD and BCR‐723, representatives of natural and urban environments, respectively. To achieve this, we developed a specific procedure for dust, applicable in the 4–25 mg mass range, to separate the six elements using a multi‐column ion‐exchange chromatographic method and MC‐ICP‐MS measurements.  相似文献   
9.
基于地缘政治视角,分析本世纪初发生在原苏联地区“颜色革命”的诱发因素,认为美国根据其地缘战略格局对“颜色革命”发生地存在一定程度的主观选择性,国家内部经济、政治、社会等层面的矛盾也同样作为发生背景。在中亚地缘格局动态分析的基础上,结合中亚五国形势,从时间和空间双重维度对中亚地区未来发生“颜色革命”的可能性进行识别与评判,得出1) 整体来看,中亚近期内爆发“颜色革命”可能性较小,但从长远来看不能掉以轻心。2)土、乌未来稳定可期,塔、吉、哈需谨防“颜色革命”卷土重来。  相似文献   
10.
首先利用ALOS PALSAR数据,通过D-InSAR技术获取2007-06-03云南宁洱MS6.4地震的同震形变场,然后基于Okada弹性半空间位错模型反演该地震的断层几何以及精细滑动分布,最后计算宁洱地震后周边断层的静态库仑应力变化。结果表明,形变主要集中在西盘,最大视线向形变量为51.6 cm;反演得到的震源位置为23.05°N、101.02°E,深度3 km,断层走向145°,倾向49.5°,平均滑动角153°,发震断层为NNW向普洱断裂,断层活动以右旋走滑为主,兼具逆冲分量;断层面最大滑动量为1.2 m,反演得到的震级为MW619。基于库仑应力场发现,磨黑断裂处于库仑应力增加区域,而2014年景谷地震位于负值区域。结合实地考察资料和反演结果表明,宁洱地震为浅源地震,但断层并未出露地表。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号