首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   30868篇
  免费   6087篇
  国内免费   8018篇
测绘学   1734篇
大气科学   3194篇
地球物理   8140篇
地质学   19577篇
海洋学   4679篇
天文学   1543篇
综合类   1928篇
自然地理   4178篇
  2024年   83篇
  2023年   370篇
  2022年   884篇
  2021年   1138篇
  2020年   1260篇
  2019年   1363篇
  2018年   1207篇
  2017年   1289篇
  2016年   1321篇
  2015年   1550篇
  2014年   1938篇
  2013年   2156篇
  2012年   2011篇
  2011年   2079篇
  2010年   1836篇
  2009年   2083篇
  2008年   2084篇
  2007年   2271篇
  2006年   2394篇
  2005年   2010篇
  2004年   1860篇
  2003年   1665篇
  2002年   1442篇
  2001年   1285篇
  2000年   1136篇
  1999年   1042篇
  1998年   892篇
  1997年   771篇
  1996年   610篇
  1995年   588篇
  1994年   545篇
  1993年   454篇
  1992年   342篇
  1991年   255篇
  1990年   191篇
  1989年   165篇
  1988年   110篇
  1987年   80篇
  1986年   47篇
  1985年   44篇
  1984年   36篇
  1983年   20篇
  1982年   6篇
  1981年   13篇
  1980年   8篇
  1979年   3篇
  1978年   10篇
  1977年   10篇
  1971年   3篇
  1954年   8篇
排序方式: 共有10000条查询结果,搜索用时 312 毫秒
1.
Few long-term studies have explored how intensively managed short rotation forest plantations interact with climate variability. We examine how prolonged severe drought and forest operations affect runoff in 11 experimental catchments on private corporate forest land near Nacimiento in south central Chile over the period 2008–2019. The catchments (7.7–414 ha) contain forest plantations of exotic fast-growing species (Pinus radiata, Eucalyptus spp.) at various stages of growth in a Mediterranean climate (mean long-term annual rainfall = 1381 mm). Since 2010, a drought, unprecedented in recent history, has reduced rainfall at Nacimiento by 20%, relative to the long-term mean. Pre-drought runoff ratios were <0.2 under 8-year-old Eucalyptus; >0.4 under 21-year-old Radiata pine and >0.8 where herbicide treatments had controlled vegetation for 2 years in 38% of the catchment area. Early in the study period, clearcutting of Radiata pine (85%–95% of catchment area) increased streamflow by 150 mm as compared with the year before harvest, while clearcutting and partial cuts of Eucalyptus did not increase streamflow. During 2008–2019, the combination of emerging drought and forestry treatments (replanting with Eucalyptus after clearcutting of Radiata pine and Eucalyptus) reduced streamflow by 400–500 mm, and regeneration of previously herbicide-treated vegetation combined with growth of Eucalyptus plantations reduced streamflow by 1125 mm (87% of mean annual precipitation 2010–2019). These results from one of the most comprehensive forest catchment studies in the world on private industrial forest land indicate that multiple decades of forest management have reduced deep soil moisture reservoirs. This effect has been exacerbated by drought and conversion from Radiata pine to Eucalyptus, apparently largely eliminating subsurface supply to streamflow. The findings reveal tradeoffs between wood production and water supply, provide lessons for adapting forest management to the projected future drier climate in Chile, and underscore the need for continued experimental work in managed forest plantations.  相似文献   
2.
Macrophyte community diversity and composition respond to ecosystem conservation and local environmental factors. In this study, we developed a multidimensional diversity framework for macrophyte communities, including the taxonomic and functional alpha and beta diversity. We used the framework to explore the relationships among water level regimes and these diversity parameters in a case study of China's Baiyangdian Lake. Analysis of indicators of hydrologic alteration divided the water level from 1959 to 2019 into four regimes (dry, <6.42 m; low, 6.42–7.23 m; medium, 7.23–8.19 m; high, >8.19 m). Alpha and beta diversity were significantly higher in the medium regime than in the low and high regimes. Redundancy analysis indicated that the maximum water depth significantly affected taxonomic alpha diversity, and total nitrogen (TN) and chemical oxygen demand (COD) concentration significantly affected functional alpha diversity, respectively. Mantel tests showed that TN, Secchi depth (SD), and water depth in the high water level regime significantly increased the total beta diversity and turnover components. TN was the main factor that increased total taxonomic beta diversity. Water level regime mainly influenced interspecific relationships by changing the TN and COD concentration. The water level should be maintained between the medium and high water level regimes to promote restoration of the macrophyte community and improve ecosystem stability. The biodiversity evaluation framework would provide a deeper insight into the hydrological process management for restoration of aquatic macrophyte communities in shallow lakes.  相似文献   
3.
In snowmelt-driven mountain watersheds, the hydrologic connectivity between meteoric waters and stream flow generation varies strongly with the season, reflecting variable connection to soil and groundwater storage within the watershed. This variable connectivity regulates how streamflow generation mechanisms transform the seasonal and elevational variation in oxygen and hydrogen isotopic composition (δ18O and δD) of meteoric precipitation. Thus, water isotopes in stream flow can signal immediate connectivity or more prolonged mixing, especially in high-relief mountainous catchments. We characterized δ18O and δD values in stream water along an elevational gradient in a mountain headwater catchment in southwestern Montana. Stream water isotopic compositions related most strongly to elevation between February and March, exhibiting higher δ18O and δD values with decreasing elevation. These elevational isotopic lapse rates likely reflect increased connection between stream flow and proximal snow-derived water sources heavily subject to elevational isotopic effects. These patterns disappeared during summer sampling, when consistently lower δ18O and δD values of stream water reflected contributions from snowmelt or colder rainfall, despite much higher δ18O and δD values expected in warmer seasonal rainfall. The consistently low isotopic values and absence of a trend with elevation during summer suggest lower connectivity between summer precipitation and stream flow generation as a consequence of drier soils and greater transpiration. As further evidence of intermittent seasonal connectivity between the stream and adjacent groundwaters, we observed a late-winter flush of nitrate into the stream at higher elevations, consistent with increased connection to accumulating mineralized nitrogen in riparian wetlands. This pattern was distinct from mid-summer patterns of nitrate loading at lower elevations that suggested heightened human recreational activity along the stream corridor. These observations provide insights linking stream flow generation and seasonal water storage in high elevation mountainous watersheds. Greater understanding of the connections between surface water, soil water and groundwater in these environments will help predict how the quality and quantity of mountain runoff will respond to changing climate and allow better informed water management decisions.  相似文献   
4.
The 33 086 ha mixed land use Fall Creek watershed in upstate New York is part of the Great Lakes drainage system. Results from more than 3500 water samples are available in a data set that compiles flow data and measurements of various water quality analytes collected between 1972 and 1995 in all seasons and under all flow regimes in Fall Creek and its tributaries. Data is freely accessible at https://ecommons.cornell.edu/handle/1813/8148 and includes measurements of suspended solids, pH, alkalinity, calcium, magnesium, potassium, sodium, chloride, nitrate nitrogen (NO3-N), sulphate sulphur (SO4-S), phosphorus (P) fractions molybdate reactive P (MRP) and total dissolved P (TDP), percent P in sediment, and ammonium nitrogen (NH4-N). Methods, sub-watershed areas, and coordinates for sampling sites are also included. The work represented in this data set has made important scientific contributions to understanding of hydrological and biogeochemical processes that influence loading in mixed use watersheds and that have an impact on algal productivity in receiving water bodies. In addition, the work has been foundational for important regulatory and management decisions in the region.  相似文献   
5.
青州市表层土壤元素地球化学组合特征研究   总被引:1,自引:0,他引:1       下载免费PDF全文
聚类分析和因子分析可以获得土壤元素地球化学组合特征及其差异性。对青州市表层土壤样品数据进行分析研究,通过聚类分析,绘制表层土壤元素聚类谱系图,将23种元素或指标分为5个元素组合簇群及2个单元素簇,研究各元素间的组合特征,探讨其相关性、聚集性及其指示意义;通过因子分析,找出有代表性的因子,用其代表变量,绘制典型因子得分等值线图,并从中分析不同元素组合的区域分布基于何种因素,用11个代表性因子的分布特征就基本可以代表青州市表层土壤23项原始变量的分布特征,并对F1,F2,F3主因子进行了地质解释。聚类分析与因子分析相结合,利于表层土壤中元素的共生组合特征及其差异性研究,利于对研究区表层土壤异常进行归纳总结。  相似文献   
6.
Forests in the Southeastern United States are predicted to experience future changes in seasonal patterns of precipitation inputs as well as more variable precipitation events. These climate change‐induced alterations could increase drought and lower soil water availability. Drought could alter rooting patterns and increase the importance of deep roots that access subsurface water resources. To address plant response to drought in both deep rooting and soil water utilization as well as soil drainage, we utilize a throughfall reduction experiment in a loblolly pine plantation of the Southeastern United States to calibrate and validate a hydrological model. The model was accurately calibrated against field measured soil moisture data under ambient rainfall and validated using 30% throughfall reduction data. Using this model, we then tested these scenarios: (a) evenly reduced precipitation; (b) less precipitation in summer, more in winter; (c) same total amount of precipitation with less frequent but heavier storms; and (d) shallower rooting depth under the above 3 scenarios. When less precipitation was received, drainage decreased proportionally much faster than evapotranspiration implying plants will acquire water first to the detriment of drainage. When precipitation was reduced by more than 30%, plants relied on stored soil water to satisfy evapotranspiration suggesting 30% may be a threshold that if sustained over the long term would deplete plant available soil water. Under the third scenario, evapotranspiration and drainage decreased, whereas surface run‐off increased. Changes in root biomass measured before and 4 years after the throughfall reduction experiment were not detected among treatments. Model simulations, however, indicated gains in evapotranspiration with deeper roots under evenly reduced precipitation and seasonal precipitation redistribution scenarios but not when precipitation frequency was adjusted. Deep soil and deep rooting can provide an important buffer capacity when precipitation alone cannot satisfy the evapotranspirational demand of forests. How this buffering capacity will persist in the face of changing precipitation inputs, however, will depend less on seasonal redistribution than on the magnitude of reductions and changes in rainfall frequency.  相似文献   
7.
中国草畜平衡状态时空演变指示的草地生态保护格局   总被引:2,自引:0,他引:2  
黄麟  翟俊  祝萍  郑瑜晗 《地理学报》2020,75(11):2396-2407
中国草原牧区作为重要生态安全屏障和草地畜牧业生产基地,其草畜平衡状态直接影响草地退化与恢复,进而影响草地生态系统服务能力的强弱。本文分析了2000—2015年主要草原牧区草地植被覆盖、牧草供给、草畜平衡状态的时空变化特征,深入探讨草地退化与恢复及载畜压力下草地生态系统保护与恢复空间格局。结果表明:过去16年主要草原牧区草地面积净减少约163万hm2,6.7%的草地出现植被覆盖退化,而5.4%的草地呈现植被覆盖明显恢复。天然草地牧草供给量以增加为主,年增率约0.3 kg/hm2,然而其载畜压力亦持续增加,不考虑补饲的载畜压力指数高达3.8,除内蒙古东北部、青藏高原中部仍有载畜潜力,其余多处于超载状态;考虑实际冷季补饲的载畜压力指数约3.1,内蒙古中东部有所缓解;假设冷季全额补饲则载畜压力指数减至1.9,内蒙古、青藏高原等区域明显缓解。叠加上述数据,本文针对自然保护地、牧区、半农半牧区和农区等不同区域的草地生态保护格局,提出了平衡草地生态保护与畜牧生产利用的不同发展策略。  相似文献   
8.
Beaver dam analogues (BDAs) are a cost-effective stream restoration approach that leverages the recognized environmental benefits of natural beaver dams on channel stability and local hydrology. Although natural beaver dams are known to exert considerable influence on the hydrologic conditions of a stream system by mediating geomorphic processes, nutrient cycling, and groundwater–surface water interactions, the impacts of beaver-derived restoration methods on groundwater–surface water exchange are poorly characterized. To address this deficit, we monitored hyporheic exchange fluxes and streambed porewater biogeochemistry across a sequence of BDAs installed along a central Wyoming stream during the summer of 2019. Streambed fluxes were quantified by heat tracing methods and vertical hydraulic gradients. Biogeochemical activity was evaluated using major ion porewater chemistry and principal component analysis. Vertical fluxes of approximately 1.0 m/day were observed around the BDAs, as was the development of spatially heterogeneous zones of nitrate production, groundwater upwelling, and anaerobic reduction. Strong contrasts in hyporheic zone processes were observed across BDAs of differing sizes. This suggests that structures may function with size-dependent behaviour, only altering groundwater–surface water interactions after a threshold hydraulic step height is exceeded. Patterns of hyporheic exchange and biogeochemical cycling around the studied BDAs resemble those around natural beaver dams, suggesting that BDAs may provide comparable benefits to channel complexity and near-stream function over a 1-year period.  相似文献   
9.
利用香港卫星定位参考站网GNSS观测数据,提取强热带风暴"塔拉斯"与热带风暴"洛克"影响期间各测站天顶方向对流层延迟,反演香港区域大气可降水量;根据香港区域49个天文台气象站提供的实测降雨量数据,分析大气可降水量与实际降雨量的相关性,以及两次台风对香港区域水汽时空分布的不同影响。结果表明,大气可降水量在台风影响前期均上升,在大量降雨后回落,但在连续台风的间歇期间,仍高于台风来临前的水平;水汽累积是大量降雨的前提条件,当水汽累积量相近时,水汽累积时长与累积降雨量呈正相关;台风期间大气可降水量值超过65 mm的区域面积与台风等级相关,台风路径对局部水汽分布有一定的影响。  相似文献   
10.
Difficulties are involved in discrete element method (DEM) modelling of the flexible boundary, that is, the membranes covering the soil sample, which can be commonly found in contemporary laboratory soil tests. In this paper, a novel method is proposed wherein the finite difference method (FDM) and DEM are coupled to simulate the rubber membrane and soil body, respectively. Numerical plane strain and triaxial tests, served by the flexible membrane, are implemented and analysed later. The effect of the membrane modulus on the measurement accuracy is considered, with analytical formulae derived to judge the significance of this effect. Based on an analysis of stress-strain responses and the grain rotation field, the mechanical performances produced by the flexible and rigid lateral boundaries are compared for the plane strain test. The results show that (1) the effect of the membrane on the test result becomes more significant at larger strain level because the membrane applies additional lateral confining pressure to the soil body; (2) the tested models reproduce typical stress and volumetric paths for specimens with shear bands; (3) for the plane strain test, the rigid lateral boundary derives a much higher peak strength and larger bulk dilatation, but a similar residual strength, compared with the flexible boundary. The latter produces a more uniform (or ‘diffuse') rotation field and more mobilised local kinematics than does the former. All simulations show that the proposed FDM-DEM coupling method is able to simulate laboratory tests with a flexible boundary membrane.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号