首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5715篇
  免费   250篇
  国内免费   49篇
测绘学   171篇
大气科学   560篇
地球物理   1308篇
地质学   1822篇
海洋学   574篇
天文学   971篇
综合类   17篇
自然地理   591篇
  2023年   15篇
  2022年   18篇
  2021年   83篇
  2020年   88篇
  2019年   99篇
  2018年   145篇
  2017年   127篇
  2016年   198篇
  2015年   152篇
  2014年   175篇
  2013年   315篇
  2012年   260篇
  2011年   341篇
  2010年   269篇
  2009年   356篇
  2008年   323篇
  2007年   308篇
  2006年   270篇
  2005年   230篇
  2004年   238篇
  2003年   207篇
  2002年   195篇
  2001年   146篇
  2000年   144篇
  1999年   125篇
  1998年   136篇
  1997年   82篇
  1996年   87篇
  1995年   61篇
  1994年   57篇
  1993年   64篇
  1992年   50篇
  1991年   56篇
  1990年   36篇
  1989年   39篇
  1988年   30篇
  1987年   43篇
  1986年   34篇
  1985年   49篇
  1984年   55篇
  1983年   40篇
  1982年   37篇
  1981年   29篇
  1980年   26篇
  1979年   23篇
  1978年   16篇
  1977年   16篇
  1976年   16篇
  1975年   16篇
  1971年   10篇
排序方式: 共有6014条查询结果,搜索用时 31 毫秒
1.
When the observation of small headwater catchments in the pre-Alpine Alptal valley (central Switzerland) started in the late 1960s, the researchers were mainly interested in questions related to floods and forest management. Investigations of geomorphological processes in the steep torrent channels followed in the 1980s, along with detailed observations of biogeochemical and ecohydrological processes in individual forest stands. More recently, research in the Alptal has addressed the impacts of climate change on water supply and runoff generation. In this article, we describe, for the first time, the evolution of catchment research at Alptal, and present new analyses of long-term trends and short-term hydrologic behaviour. Hydrometeorological time series from the past 50 years show substantial interannual variability, but only minimal long-term trends, except for the ~2°C increase in mean annual air temperature over the 50-year period, and a corresponding shift towards earlier snowmelt. Similar to previous studies in larger Alpine catchments, the decadal variations in mean annual runoff in Alptal's small research catchments reflect the long-term variability in annual precipitation. In the Alptal valley, the most evident hydrological trends were observed in late spring and are related to the substantial change in the duration of the snow cover. Streamflow and water quality are highly variable within and between hydrological events, suggesting rapid shifts in flow pathways and mixing, as well as changing connectivity of runoff-generating areas. This overview illustrates how catchment research in the Alptal has evolved in response to changing societal concerns and emerging scientific questions.  相似文献   
2.
Understanding changes in evapotranspiration during forest regrowth is essential to predict changes of stream runoff and recovery after forest cutting. Canopy interception (Ic) is an important component of evapotranspiration, however Ic changes and the impact on stream runoff during regrowth after cutting remains unclear due to limited observations. The objective of this study was to examine the effects of Ic changes on long-term stream runoff in a regrowth Japanese cedar and Japanese cypress forest following clear-cutting. This study was conducted in two 1-ha paired headwater catchments at Fukuroyamasawa Experimental Watershed in Japan. The catchments were 100% covered by Japanese coniferous plantation forest, one of which was 100% clear-cut in 1999 when the forest was 70 years old. In the treated catchment, annual runoff increased by 301 mm/year (14% of precipitation) the year following clear-cutting, and remained 185 mm/year (7.9% of precipitation) higher in the young regrowth forest for 12–14 years compared to the estimated runoff assuming no clear-cutting. The Ic change was −358 mm/year (17% of precipitation) after cutting and was −168 mm/year (6.7% of precipitation) in the 12–14 years old regrowth forest compared to the observed Ic during the pre-cutting period. Stream runoff increased in all seasons, and the Ic change was the main fraction of evapotranspiration change in all seasons throughout the observation period. These results suggest that the change in Ic accounted for most of the runoff response following forest cutting and the subsequent runoff recovery in this coniferous forest.  相似文献   
3.
Soil water dynamics are central in linking and regulating natural cycles in ecohydrology, however, mathematical representation of soil water processes in models is challenging given the complexity of these interactions. To assess the impacts of soil water simulation approaches on various model outputs, the Soil and Water Assessment Tool was modified to accommodate an alternative soil water percolation method and tested at two geographically and climatically distinct, instrumented watersheds in the United States. Soil water was evaluated at the site scale via measured observations, and hydrologic and biophysical outputs were analysed at the watershed scale. Results demonstrated an improved Kling–Gupta Efficiency of up to 0.3 and a reduction in percent bias from 5 to 25% at the site scale, when soil water percolation was changed from a threshold, bucket-based approach to an alternative approach based on variable hydraulic conductivity. The primary difference between the approaches was attributed to the ability to simulate soil water content above field capacity for successive days; however, regardless of the approach, a lack of site-specific characterization of soil properties by the soils database at the site scale was found to severely limit the analysis. Differences in approach led to a regime shift in percolation from a few, high magnitude events to frequent, low magnitude events. At the watershed scale, the variable hydraulic conductivity-based approach reduced average annual percolation by 20–50 mm, directly impacting the water balance and subsequently biophysical predictions. For instance, annual denitrification increased by 14–24 kg/ha for the new approach. Overall, the study demonstrates the need for continued efforts to enhance soil water model representation for improving biophysical process simulations.  相似文献   
4.
5.
Book reviews     
Howard  R. F.  van den Oord  G. H. J.  Švestka  Z. 《Solar physics》1996,169(1):225-227
  相似文献   
6.
7.
8.
Back in the mid-nineteenth century British explorer James Clark Ross took his ships, HMS Terror and HMS Erebus , farther south than anyone else had been. He now lends his name to James Ross Island, a part-volcanic edifice that rises out of the sea off the north-east tip of the Antarctic Peninsula. The island records a geological history dating back to the Cretaceous, though its great peaks are volcanic. The most recent rocks of the island record a monumental struggle between fire and ice, the volcanoes, and the ice sheets that cover them. The glacigenic sediments that are interspersed with the volcanic rocks contain rich fossil assemblages which suggest that at times, the climate was warmer, with the ice retreating. Their study may help us to delimit the patterns of climate change in the Antarctic Peninsula region as Earth's global climate warms.  相似文献   
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号