首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   62篇
  免费   0篇
测绘学   3篇
大气科学   3篇
地球物理   4篇
地质学   40篇
海洋学   1篇
天文学   3篇
自然地理   8篇
  2013年   4篇
  2012年   1篇
  2011年   2篇
  2010年   7篇
  2008年   3篇
  2007年   1篇
  2006年   4篇
  2005年   2篇
  2004年   1篇
  2003年   1篇
  2001年   2篇
  2000年   1篇
  1998年   1篇
  1997年   3篇
  1996年   5篇
  1995年   2篇
  1994年   1篇
  1992年   1篇
  1991年   4篇
  1990年   2篇
  1989年   1篇
  1988年   5篇
  1987年   1篇
  1986年   2篇
  1985年   1篇
  1984年   1篇
  1981年   1篇
  1969年   1篇
  1966年   1篇
排序方式: 共有62条查询结果,搜索用时 31 毫秒
1.
The Bridport Sand Formation is an intensely bioturbated sandstone that represents part of a mixed siliciclastic‐carbonate shallow‐marine depositional system. At outcrop and in subsurface cores, conventional facies analysis was combined with ichnofabric analysis to identify facies successions bounded by a hierarchy of key stratigraphic surfaces. The geometry of these surfaces and the lateral relationships between the facies successions that they bound have been constrained locally using 3D seismic data. Facies analysis suggests that the Bridport Sand Formation represents progradation of a low‐energy, siliciclastic shoreface dominated by storm‐event beds reworked by bioturbation. The shoreface sandstones form the upper part of a thick (up to 200 m), steep (2–3°), mud‐dominated slope that extends into the underlying Down Cliff Clay. Clinoform surfaces representing the shoreface‐slope system are grouped into progradational sets. Each set contains clinoform surfaces arranged in a downstepping, offlapping manner that indicates forced‐regressive progradation, which was punctuated by flooding surfaces that are expressed in core and well‐log data. In proximal locations, progradational shoreface sandstones (corresponding to a clinoform set) are truncated by conglomerate lags containing clasts of bored, reworked shoreface sandstones, which are interpreted as marking sequence boundaries. In medial locations, progradational clinoform sets are overlain across an erosion surface by thin (<5 m) bioclastic limestones that record siliciclastic‐sediment starvation during transgression. Near the basin margins, these limestones are locally thick (>10 m) and overlie conglomerate lags at sequence boundaries. Sequence boundaries are thus interpreted as being amalgamated with overlying transgressive surfaces, to form composite erosion surfaces. In distal locations, oolitic ironstones that formed under conditions of extended physical reworking overlie composite sequence boundaries and transgressive surfaces. Over most of the Wessex Basin, clinoform sets (corresponding to high‐frequency sequences) are laterally offset, thus defining a low‐frequency sequence architecture characterized by high net siliciclastic sediment input and low net accommodation. Aggradational stacking of high‐frequency sequences occurs in fault‐bounded depocentres which had higher rates of localized tectonic subsidence.  相似文献   
2.
The Generation of Granitic Magmas by Intrusion of Basalt into Continental Crust   总被引:49,自引:15,他引:49  
When basalt magmas are emplaced into continental crust, meltingand generation of silicic magma can be expected. The fluid dynamicaland heat transfer processes at the roof of a basaltic sill inwhich the wall rock melts are investigated theoretically andalso experimentally using waxes and aqueous solutions. At theroof, the low density melt forms a stable melt layer with negligiblemixing with the underlying hot liquid. A quantitative theoryfor the roof melting case has been developed. When applied tobasalt sills in hot crust, the theory predicts that basalt sillsof thicknesses from 10 to 1500 m require only 1 to 270 y tosolidify and would form voluminous overlying layers of convectingsilicic magma. For example, for a 500 m sill with a crustalmelting temperature of 850 ?C, the thickness of the silicicmagma layer generated ranges from 300 to 1000 m for countryrock temperatures from 500 to 850?C. The temperatures of thecrustal melt layers at the time that the basalt solidifies arehigh (900–950?C) so that the process can produce magmasrepresenting large degrees of partial fusion of the crust. Meltingoccurs in the solid roof and the adjacent thermal boundary layer,while at the same time there is crystallization in the convectinginterior. Thus the magmas formed can be highly porphyritic.Our calculations also indicate that such magmas can containsignificant proportions of restite crystals. Much of the refractorycomponents of the crust are dissolved and then re-precipitatedto form genuine igneous phenocrysts. Normally zoned plagioclasefeldspar phenocrysts with discrete calcic cores are commonlyobserved in many granitoids and silicic volcanic rocks. Suchpatterns would be expected in crustal melting, where simultaneouscrystallization is an inevitable consequence of the fluid dynamics. The time-scales for melting and crystallization in basalt-inducedcrustal melting (102–103 y) are very short compared tothe lifetimes of large silicic magma systems (>106 y) orto the time-scale for thermal relaxation of the continentalcrust (> l07 y). Several of the features of silicic igneoussystems can be explained without requiring large, high-level,long-lived magma chambers. Cycles of mafic to increasingly largevolumes of silicic magma with time are commonly observed inmany systems. These can be interpreted as progressive heatingof the crust until the source region is partially molten andbasalt can no longer penetrate. Every input of basalt triggersrapid formation of silicic magma in the source region. Thismagma will freeze again in time-scales of order l02–103y unless it ascends to higher levels. Crystallization can occurin the source region during melting, and eruption of porphyriticmagmas does not require a shallow magma chamber, although suchchambers may develop as magma is intruded into high levels inthe crust. For typical compositions of upper crustal rocks,the model predicts that dacitic volcanic rocks and granodiorite/tonaliteplutons would be the dominant rock types and that these wouldascend-from the source region and form magmas ranging from thosewith high temperature and low crystal content to those withhigh crystal content and a significant proportion of restite.  相似文献   
3.
To a varying degree the Middle and Late Pleistocene ice sheets in northern Eurasia redirected the drainage of major catchments in Europe and western Siberia from the North Sea and Arctic Ocean south to the Caspian, Black Sea, and ultimately the Mediterranean. During the Late Weichselian, glacial meltwater reached the Mediterranean through the Dniepr and Don catchments and to a minor extent through the Danube. During the Warthe Substage of the Saalian, meltwater from the Volga was most likely added. During the Drenthe Substagc of the Saalian the watershed shifted Par to the east, and meltwater reached the Mediterranean also from the Oh. Irtysh, Yenisei, and Tunguska catchments in Siberia. Depending on the extent of the ice sheets, the increase in freshwater supply during deglaciations resulted in reductions of Mediterranean overflow into the North Atlantic. Such overflow reductions may have reduced vapour transport to the ice sheets and thus accelerated wastage.  相似文献   
4.
Rheology of Basalt in the Melting Range   总被引:1,自引:0,他引:1  
Experimental data have been obtained for viscosities of tholeiitemelts at temperatures from 1300 to 1120 °Cat 1 atm, usinga concentric cylinder viscometer. The apparent viscosity increasesmore than two orders of magnitude between 1200 and 1120 °C(0–25 per cent crystallization) for shear rates of about10 sec-1 and even more for lower shear rates. Non-Newtonianbehaviour of ‘pseudo-plastic type’ becomes extremelypronounced at temperatures below about 1130 °C. At thesetemperatures, differences of less than 5 °C can producechanges in apparent viscosity amounting to orders of magnitude.These observations have led to the conclusion that the heatof deformation must itself influence rheological behaviour inthe melting range. An equation for thermal energy balances andtheir rates of change is constructed and placed in a non-dimensionalform that has been given published solutions by I. J. Gruntfest(1963) relating the shear stress, rate of strain, and temperaturethrough the temperature dependence of viscosity. The resultsshow that in an adiabatic system the heating rate increaseswith time so that the temperature eventually runs out of bounds,a process termed ‘thermal feedback’ by Gruntfest.A hypothesis of shear melting is derived on the basis of a simplifiedviscosity function extrapolated to the solidus temperature.The hypothesis is applied to magma generation in the earth onthe basis of dimensional arguments. It is also suggested thatthermal instabilities give rise to a sort of viscous failureresponsible for deep-focus earthquakes, and that the two phenomenahave the same cause relating ultimately to a gravitational energysource.  相似文献   
5.
GARY KOCUREK 《Sedimentology》1981,28(6):753-780
Bounding surfaces and interdune deposits provide keys for detailed interpretations of the development, shape, type, wavelength and angle of climb of aeolian bedforms, as well as overall sand sea conditions. Current alternate interpretations of bounding surfaces require very different, but testable models for sand sea deposition. Two perpendicular traverses of Jurassic Entrada Sandstone, Utah, reveal relations among cross-strata, first-order bounding surfaces, and horizontal strata. These field relations seem explicable only as the deposits of downwind-migrating, climbing, enclosed interdune basins (horizontal strata) and dune bodies consisting of superimposed smaller crescentic dunes (cross-stratified deposits). A 1.7 km traverse parallel to the palaeowind direction provides a time-transgressive view showing continuous cosets of cross-strata, first-order bounding surfaces and interdune deposits climbing downwind at an angle of a few tenths of a degree. Changes occur in the angle of climb, cross-strata structure, and interdune deposits; these reflect changes in depositional conditions through time. A 1.5 km traverse perpendicular to the palaeowind direction provides a view at an instant in geological time showing first-order bounding surfaces and interdune deposits forming flat, laterally discontinuous lenticular bodies. The distribution of interdune sedimentary structures in this traverse is very similar to that of some modern interdune basins, such as those on Padre Island, Texas. Hierarchies of bounding surfaces in an aeolian deposit reflect the bedform development on an erg. The presence of three orders of bounding surfaces indicates dune bodies consisting of smaller, super-imposed dunes. The geometry of first-order bounding surfaces is a reflection of the shape of the inter-dune basins. Second-order bounding surfaces originate by the migration of the superimposed dunes over the larger dune body and reflect individual dune shape and type. Third-order bounding surfaces are reactivation surfaces showing stages in the advance of individual dunes. The presence of only two orders of bounding surfaces indicates simple dunes. Modern and Entrada interdune deposits show a wide variety of sediment types and structures reflecting deposition under wet, damp, and dry conditions. Interdune deposits are probably the best indicators of overall erg conditions and commonly show complex vertical sequences reflecting changes in specific depositional conditions.  相似文献   
6.
Turbidity currents in the ocean are driven by suspended sediment. Yet results from surveys of the modern sea floor and turbidite outcrops indicate that they are capable of transporting as bedload and depositing particles as coarse as cobble sizes. While bedload cannot drive turbidity currents, it can strongly influence the nature of the deposits they emplace. This paper reports on the first set of experiments which focus on bedload transport of granular material by density underflows. These underflows include saline density flows, hybrid saline/turbidity currents and a pure turbidity current. The use of dissolved salt is a surrogate for suspended mud which is so fine that it does not settle out readily. Thus, all the currents can be considered to be model turbidity currents. The data cover four bed conditions: plane bed, dunes, upstream‐migrating antidunes and downstream‐migrating antidunes. The bedload transport relation obtained from the data is very similar to those obtained for open‐channel flows and, in fact, is fitted well by an existing relation determined for open‐channel flows. In the case of dunes and downstream‐migrating antidunes, for which flow separation on the lee sides was observed, form drag falls in a range that is similar to that due to dunes in sand‐bed rivers. This form drag can be removed from the total bed shear stress using an existing relation developed for rivers. Once this form drag is subtracted, the bedload data for these cases collapse to follow the same relation as for plane beds and upstream‐migrating antidunes, for which no flow separation was observed. A relation for flow resistance developed for open‐channel flows agrees well with the data when adapted to density underflows. Comparison of the data with a regime diagram for field‐scale sand‐bed rivers at bankfull flow and field‐scale measurements of turbidity currents at Monterey Submarine Canyon, together with Shields number and densimetric Froude number similarity analyses, provide strong evidence that the experimental relations apply at field scale as well.  相似文献   
7.
Lower to Middle Turonian deposits within the Bohemian Cretaceous Basin (Central Europe) consist of coarse‐grained deltaic sandstones passing distally into fine‐grained offshore sediments. Dune‐scale cross‐beds superimposed on delta‐front clinoforms indicate a vigorous basinal palaeocirculation capable of transporting coarse‐grained sand across the entire depth range of the clinoforms (ca 35 m). Bi‐directional, alongshore‐oriented, trough cross‐set axes, silt drapes and reactivation surfaces indicate tidal activity. However, the Bohemian Cretaceous Basin at this time was over a thousand kilometres from the shelf break and separated from the open ocean by a series of small islands. The presence of tidally‐influenced deposits in a setting where co‐oscillating tides are likely to have been damped down by seabed friction and blocked by emergent land masses is problematic. The Imperial College Ocean Model, a fully hydrodynamic, unstructured mesh finite element model, is used to test the hypothesis that tidal circulation in this isolated region was capable of generating the observed grain‐size distributions, bedform types and palaeocurrent orientations. The model is first validated for the prediction of bed shear stress magnitudes and sediment transport pathways against the present‐day North European shelf seas that surround the British Isles. The model predicts a microtidal to mesotidal regime for the Bohemian Cretaceous Basin across a range of sensitivity tests with elevated tidal ranges in local embayments. Funnelling associated with straits increases tidal current velocities, generating bed shear stresses that were capable of forming the sedimentary structures observed in the field. The model also predicts instantaneous bi‐directional currents with orientations comparable with those measured in the field. Overall, the Imperial College Ocean Model predicts a vigorous tide‐driven palaeocirculation within the Bohemian Cretaceous Basin that would indisputably have influenced sediment dispersal and facies distributions. Palaeocurrent vectors and sediment transport pathways however vary markedly in the different sensitivity tests. Accurate modelling of these parameters, in this instance, requires greater palaeogeographic certainty than can be extracted from the available rock record.  相似文献   
8.
Marginal aeolian successions contain different lithological units with variable geometries, dimensions and spatial distributions. Such variations may result in considerable heterogeneity within hydrocarbon reservoirs developed in successions of this type, which poses a high risk to their efficient development. Here, such heterogeneity is described and characterized at inter‐well (<1 km) scales using two well‐exposed outcrop analogues of ‘end member’ marginal aeolian deposits from the Permian Cedar Mesa Sandstone and Jurassic Page Sandstone of south‐central Utah, USA. The sedimentology and stratigraphic architecture of the Cedar Mesa Sandstone was studied in a 1·2 km2 area in the Indian Creek region of southern Utah, where the interval consists of interbedded fluvial and aeolian deposits representative of a fluvial‐dominated erg margin. The Page Sandstone was studied in a 4·3 km2 area near Escalante, close to the Utah‐Arizona border, where it consists of interbedded sabkha and aeolian deposits representative of a transitional‐marine erg margin. The three‐dimensional stratigraphic architectures of both reservoir analogues have been characterized, in order to establish the dimensions, geometries and connectivity of high‐permeability aeolian sandstones. Facies architecture of the aeolian‐sabkha deposits is characterized by laterally continuous aeolian sandstone layers of relatively uniform thickness that alternate with layers of heterolithic sabkha deposits. Aeolian sandstones are thus likely to form vertically unconnected but laterally widespread flow units in analogous reservoirs. Facies architecture in the aeolian‐fluvial deposits is more complex, because it contains alternating intervals of aeolian sandstone and fluvial heterolithic strata, both of which may be laterally discontinuous at the studied length‐scales. Aeolian sandstones encased by fluvial heterolithic strata may form small, isolated flow units in analogous reservoirs, although the limited continuity of fluvial heterolithic strata results in vertical connectivity between successive aeolian sandstones in other locations. These architectural templates may be used to condition zonation schemes in models of marginal aeolian reservoirs.  相似文献   
9.
The imminent return of the Genesis Sample Return Capsule (SRC) from the Earth’s L1 point on September 8, 2004, represents the first opportunity since the Apollo era to study the atmospheric entry of a meter-sized body at or above the Earth’s escape speed. Until now, reentry heating models are based on only one successful reentry with an instrumented vehicle at higher than escape speed, the 22 May 1965 NASA “FIRE 2” experiment. In preparation of an instrumented airborne and ground-based observing campaign, we examined the expected bolide radiation for the reentry of the Genesis SRC. We find that the expected emission spectrum consists mostly of blackbody emission from the SRC surface (T∼ ∼2630 K@peak heating), slightly skewed in shape because of a range of surface temperatures. At high enough spectral resolution, shock emission from nitrogen and oxygen atoms, as well as the first positive and first negative bands of N2+, will stand out above this continuum. Carbon atom lines and the 389-nm CN band emission may also be detected, as well as the mid-IR 4.6-μm CO band. The ablation rate can be studied from the signature of trace sodium in the heat shield material, calibrated by the total amount of matter lost from the recovered shield. A pristine collection of the heat shield would also permit the sampling of products of ablation.  相似文献   
10.
Inter-urban income disparities reflect differences between individual urban localities in the average incomes of their residents. The present paper discusses different ways of visualizing such disparities on thematic maps. The approach we propose is based on the transformation of distances between individual localities and a reference city (e.g. a major population centre of a country) in proportion to the actual differences in the income levels. The general principle of such a transformation is to bring closer to the reference city places with higher incomes, while moving away localities with low income levels. Three alternative approaches to the implementation of this transformation technique are discussed. According to the ‘actual distance’ method, the spatial ‘shift’ of a locality on the map is set proportional to both the relative difference in incomes and the aerial distance between a locality and the reference city. In the ‘proportional increment’ transformation, the distance between a locality and the reference city is adjusted by a parameter whose values are proportional to income disparities between the two. Lastly, according to the ‘concentric circle’ transformation, localities with identical levels of incomes are positioned at a certain distance from the reference city, forming concentric circles around it. Both advantages and disadvantages of these transformation techniques are discussed, and the ‘proportional increment’ method is chosen as the best-performing visualization technique. The performance of this technique is demonstrated using income data for urban localities in Israel in 1991 and 1999. As analysis indicates, the proposed method helps to illustrate both the existing patterns of inter-urban income disparities and their dynamics over time.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号