首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
D. Uli&#;ný 《Sedimentology》2001,48(3):599-628
Deposits of coarse‐grained, Gilbert‐type deltas showing varying degrees of reworking of foresets by basinal currents were identified in Middle Turonian to Early Coniacian sandstones of the Bohemian Cretaceous Basin. The progradation of the deltaic packages, earlier interpreted as large‐scale subaqueous dunes, shelf ridges or subaqueous fault‐scarp ‘accumulation terraces’, was controlled by high‐ and low‐frequency, relative sea‐level changes in a relatively slowly subsiding, intracontinental strike‐slip basin. End‐member types of the Bohemian Cretaceous coarse‐grained deltas are deep‐water deltas, characterized by thick (50–80 m) foreset packages with steep (10–30°) foresets, and shallow‐water deltas, which deposited thin (<15 m) packages with foresets typically between 4° and 10°. The differences in thickness and foreset slope angle were controlled predominantly by the accommodation available during progradation. The depositional regime of the deltas was governed by (i) the fluvial input of abundant sand bedload, with a minor proportion of gravel; (ii) gravity flows, most probably caused by liquefaction of the upper part of the unstable foreset slope; and (iii) migration of sandy bedforms on the foreset slopes. The bedform migration was driven by unidirectional currents of possible tidal origin. Individual foreset packages represent systems tracts, or parts of systems tracts, of depositional sequences. A variety of stacking patterns of high‐frequency sequences exists in the basin, caused by low‐frequency relative sea‐level changes as well as by local changes in sediment input. Because of generally low subsidence rates, fluvial or beach topset strata were not preserved in the cases studied. The absence of preserved fluvial facies, which has been one of the main arguments against the fluvio‐deltaic origin of the sandstone bodies, is explained by erosion of the topsets during transgression and their reworking into coarse‐grained lags of regional extent covering ravinement surfaces.  相似文献   

2.
The Lower Silurian siliciclastic Coralliferous Group is shown to have been deposited in an intra‐shelf position 10–15 km south of the palaeogeographic shelf‐break of the Welsh Basin. After a phase of thermal subsidence related to the development of the predominantly Llandovery Skomer Volcanic Group, the shelf basin was transgressed. This transgression was punctuated by an episode of tectonic uplift in southern Pembrokeshire, resulting in subaerial exposure of the shelf and a significant basinward shift in sedimentary environments. Erosion and sediment bypass ensued, with coarse‐grained low‐sinuosity fluvial channels transporting sediment to the northerly Welsh Basin, where significant submarine fans developed. During the early Telychian, renewed transgression took place, with lowstand gravels being ravined and reworked into parasequences of the transgressive systems tract. These thin, coarse‐grained parasequences record deposition within high‐energy wave‐dominated shoreface/inner shelf environments. Further coastal onlap resulted in the closing down of significant coarse‐grained sediment supply, with the remaining Coralliferous Group being dominated by wave‐influenced silts, mud‐shales and thin sandstones comprising the highstand systems tract. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

3.
《Sedimentology》2018,65(6):2149-2170
Hyperpycnal currents are river‐derived turbidity currents capable of transporting significant volumes of sediment from the shoreline onto the shelf and potentially further to deep ocean basins. However, their capacity to deposit sand bodies on the continental shelf is poorly understood. Shelf hyperpycnites remain an overlooked depositional element in source to sink systems, primarily due to their limited recognition in the rock record. Recent discoveries of modern shelf hyperpycnites, and previous work describing hyperpycnites deposited in slope or deep‐water settings, provide a valuable framework for understanding and recognizing shelf hyperpycnites in the rock record. This article describes well‐sorted lobate sand bodies on the continental shelf of the Neuquén Basin, Argentina, interpreted to have been deposited by hyperpycnal currents. These hyperpycnites of the Jurassic Lajas Formation are characterized by well‐sorted, medium‐grained, parallel‐laminated sandstones with hundreds of metre extensive, decimetre thick beds encased by organic‐rich, thinly laminated sandstone and siltstone. These deposits represent slightly obliquely‐migrating sand lobes fed by small rivers and deposited on the continental shelf. Hyperpycnites of the Lajas Formation highlight several unique characteristics of hyperpycnal deposits, including their distinctively thick horizontal laminae attributed to pulsing of the hyperpycnal currents, the extraction of coarse gravel due to low flow competence, and the extraction of mud due to lofting of light interstitial fluid. Recognition of shelf hyperpycnites in the Lajas Formation of the Neuquén Basin allows for a broader understanding of shelf processes and adds to the developing facies models of hyperpycnites. Recognizing and understanding the geometry and internal architecture of shelf hyperpycnites will improve current understanding of sediment transfer from rivers to deeper water, will improve palaeoenvironmental interpretations of sediment gravity‐flow deposits, and has implications for modelling potentially high‐quality hydrocarbon reservoirs.  相似文献   

4.
Late Albian to Cenomanian upper shoreface deposits from the Grajaú Basin, northern Brazil, consist of well‐sorted, very fine‐ to fine‐grained sandstones with swaley, trough, tabular and minor hummocky cross‐stratification. A striking feature of these deposits is the abundance of large‐scale scour‐and‐fill structures, which consist of regularly spaced, repetitive, very shallow swales with either symmetrical or asymmetrical profiles, arranged along an undulose surface or as a succession of superimposed troughs. The sediment filling these scours is characterized by very fine‐grained sandstone with gently undulose, near‐parallel lamination to very low‐angle dipping cross‐stratification intergraded with swaley and hummocky cross‐stratification. The nature of the scours and the sedimentary structures of their fills reveal the action of combined flows, which are hydrodynamically similar to those developed during storms. However, it is speculated that the combined flows responsible for the genesis of these structures were formed by tsunami waves enhanced by tsunami‐induced ebb currents and/or tidal currents. This interpretation is proposed on the basis of several lines of reasoning: (1) palaeogeographic reconstructions of the study area during the late Cretaceous show that it was outside the belt favourable for the development of storms; (2) comparison of the scour‐and‐fill structures with stratigraphically correlatable deposits exposed north of the study area, where similar features occur in association with abundant seismically induced, soft‐sediment deformation structures; and (3) the presence of several styles of soft‐sediment deformation features (i.e. convolute lamination, bed collapse, large‐scale folds, massive bedding, sand‐filled fractures and diastasis cracks) are suggestive of synsedimentary seismic activity in Cretaceous deposits located in and near to the study area. This study proposes that episodic, high‐amplitude tsunami waves, enhanced by tsunami‐induced ebb currents, develop powerful flows capable of producing complex patterns of erosion and sedimentation, which may be represented by scour‐and‐fill structures similar to those described here.  相似文献   

5.
This study highlights three‐dimensional variability of stratigraphic geometries in the ramp crest to basin of mixed carbonate–siliciclastic clinoforms in the Permian San Andres Formation. Standard field techniques and mapping using ground‐based lidar reveal a high degree of architectural complexity in channellized, scoured and mounded outer ramp stratigraphy. Development of these features was a function of location along the ramp profile and fluctuations in relative sea‐level. Deposition of coarse‐grained and fine‐grained turbidites in the distal outer ramp occurred through dilute and high‐density turbidity flows and was the result of highstand carbonate shedding within individual cycles. In this setting, high‐frequency cycles of relative sea‐level are interpreted on the basis of turbidite frequency, lateral extent and composition. Submarine siliciclastic sediment bypass during lowstand cycles resulted in variable degrees of siliciclastic preservation. Abundant siliciclastic material is preserved in the basin and distal outer ramp as point‐sourced lowstand wedges and line‐sourced early transgressive blankets. In mounded topography of the outer ramp, siliciclastic preservation is minimal to absent, and rare incised channels offer the best opportunity for recognition of a sequence boundary. Growth of mounded topography in the outer ramp began with scouring, followed by a combination of bioherm construction, fusulinid mound construction and isopachous draping. Intermound areas were then filled with sediment and continued mound growth was prevented by an accommodation limit. Mound growth was independent of high‐frequency cycles in relative sea‐level but was dependent on available accommodation dictated by low‐frequency cyclicity. Low‐angle ramp clinoforms with mounded topography in the outer ramp developed during the transgressive part of a composite sequence. Mound growth terminated as the ramp transformed into a shelf with oblique clinoform geometries during the highstand of the composite sequence. This example represents a ramp‐to‐shelf transition that is the result of forcing by relative sea‐level fluctuations rather than ecologic or tectonic controls.  相似文献   

6.
The sediment distribution in three narrow, linear basins, two modern and one ancient, in Greece and Italy, was studied and related to changes in basin configuration. The basins are the Plio‐Quaternary Patras–Corinth graben, the Pliocene–Quaternary Reggio–Scilla graben and the middle Tertiary Mesohellenic piggy‐back basin. These basins were formed at different times and under different geodynamic conditions, but in each case, the tectonic evolution produced a narrow area in the basin where the water depth decreased dramatically, forming a strait with a sill. This strait divided the basin into major and minor sub‐basins, and the strait has a similar impact on sedimentary environments in all three basins, even though different depositional environments were formed along the initial basin axis. Predictions for the development of depositional environments in the two modern basins, especially in their straits, are based on the studied ancient basin. In the straits, powerful tidal flows will transport finer sediments to sub‐basins and trapezoidal‐type fan‐deltas will gradually fill up and choke the strait through time. In sub‐basins, according to basin depth, either deltaic (in the shallow minor sub‐basin) or turbiditic (in the deep major sub‐basin) deposits may accumulate. Moreover, an extensive shelf is likely to develop between the strait and major sub‐basin. This shelf will be cross‐cut by canyons and characterized by thin fine‐ to coarse‐grained deposits. These sediment models could be applied to analogous basin geometries around the world. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

7.
Locally exposed Middle to Upper Eocene conglomerates in the western part of the Cenozoic Thrace Basin are interpreted as products of continuous marine erosion of a rocky coast (consisting of Lower Cretaceous carbonates) and subsequent redeposition of the land‐derived limestone material in a wave‐dominated nearshore setting during a prolonged transgression. Contemporaneous biological activity in the warm‐temperate marine environment contributed to the accumulation of mixed coarse‐grained clastic–carbonate sediments on the upper shoreface. The formation of a relatively thick sedimentary succession was favoured by the interplay of several controlling factors as only shoreface deposits were preserved in the rock record. The results may help to elucidate the evolution of the hydrocarbon‐bearing Thrace Basin and to assist with the regional correlation of its basal deposits. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

8.
The Magallanes‐Austral Basin of Patagonian Chile and Argentina is a retroforeland basin associated with Late Cretaceous–Neogene uplift of the southern Andes. The Upper Cretaceous Dorotea Formation records the final phase of deposition in the Late Cretaceous foredeep, marked by southward progradation of a shelf‐edge delta and slope. In the Ultima Esperanza district of Chile, laterally extensive, depositional dip‐oriented exposures of the Dorotea Formation contain upper slope, delta‐front and delta plain facies. Marginal and shallow marine deposits include abundant indicators of tidal activity including inclined heterolithic stratification, heterolithic to sandy tidal bundles, bidirectional palaeocurrent indicators, flaser/wavy/lenticular bedding, heterolithic tidal flat deposits and a relatively low‐diversity Skolithos ichnofacies assemblage in delta plain facies. This work documents the stratigraphic architecture and evolution of the shelf‐edge delta that was significantly influenced by strong tidal activity. Sediment was delivered to a large slump scar on the shelf‐edge by a basin‐axial fluvial system, where it was significantly reworked and redistributed by tides. A network of tidally modified mouth bars and tidal channels comprised the outermost reaches of the delta complex, which constituted the staging area and initiation point for gravity flows that dominated the slope and deeper basin. The extent of tidal influence on the Dorotea delta also has important implications for Magallanes‐Austral Basin palaeogeography. Prior studies establish axial foreland palaeodrainage, long‐term southward palaeotransport directions and large‐scale topographic confinement within the foredeep throughout Late Cretaceous time. Abundant tidal features in Dorotea Formation strata further suggest that the Magallanes‐Austral Basin was significantly embayed. This ‘Magallanes embayment’ was formed by an impinging fold–thrust belt to the west and a broad forebulge region to the east.  相似文献   

9.
The Upper Cretaceous Cerro Toro Formation in the Silla Syncline, Parque Nacional Torres del Paine, Magallanes Basin, Chile, includes over 1100 m of mainly thin‐bedded mud‐rich turbidites containing three thick divisions of coarse conglomerate and sandstone. Facies distributions, stacking patterns and lateral relationships indicate that the coarse‐grained sandstone and conglomerate units represent the fill of a series of large south to south‐east trending deep‐water channels or channel complexes. The middle coarse division, informally named the Paine member, represents the fill of at least three discrete channels or channel complexes, termed Paine A, B and C. The uppermost of these, Paine C, represents a channel belt about 3·5 km wide and its fill displays explicit details of channel geometry, channel margins, and the processes of channel development and evolution. Along its northern margin, Paine C consists of stacked, laterally offset channels, each eroded into fine‐grained mudstone and thin‐bedded sandy turbidites. Along its southern margin, the Paine C complex was bounded by a single, deeply incised but stepped erosional surface. The evolution of the Paine C channel occurred through multiple cycles of activity, each involving: (i) an initial period of channel erosion into underlying fine‐grained sediments; (ii) deposition of coarse‐grained pebble to cobble conglomerate and sandstone within the channel; and (iii) waning of coarse sediment deposition and accumulation of a widespread sheet of fine‐grained, thin‐bedded turbidites inside and outside the channel. The thin‐bedded turbidites deposited within, and adjacent to, the channel along the northern margin of the Paine C complex do not appear to represent levée deposits but, rather, a separate fine‐grained turbidite system that impinged on the Paine C channel from the north. The Cerro Toro channel complex in the Silla Syncline may mark either an early axial zone of the Magallanes Basin or a local slope mini‐basin developed behind a zone of slope faulting and folding now present immediately east of the syncline. If the latter, flows moving downslope toward the basin axis further east were diverted to the south by this developing structural high, deposited part of their coarse sediment loads, and exited the mini‐basin at a point located near the south‐eastern edge of the present Silla Syncline.  相似文献   

10.
The Upper Cretaceous Twentymile Sandstone of the Mesaverde Group in NW Colorado, USA, has been analysed with respect to its pinch‐out style and the stratigraphic position of tidally influenced facies within the sandstone tongue. Detailed sedimentological analysis has revealed that the Twentymile Sandstone as a whole is a deltaic shoreface sandstone tongue up to 50 m thick proximally. Facies change character vertically from very fine‐grained, storm wave‐dominated shelf sandstones and mudstones to fine‐grained, wave‐dominated sandstones and, finally, to fine‐ to coarse‐grained tidally dominated sandstones. The pinch‐out style is characterized by a basinward splitting of the massive proximal sandbody into seven coarsening‐upward fourth‐order sequences consisting of a lower shaly part and an upper sandy part (sandstone tongue). These are stacked overall to reflect the regressive‐to‐transgressive development of the tongue. Each of the lower sandstone tongues 1–3 are gradationally based, very fine‐grained and dominated by hummocky cross‐stratification and were deposited on the lower to upper shoreface. Sandstone tongues 4 and 5 prograded further basinwards than the underlying tongues, are erosively based, fine‐ to coarse‐grained and mainly hummocky, herringbone and trough cross‐stratified. Especially in tongue 5, tidal indicators, such as bipolar foresets and double mud drapes, are common. These tongues were deposited as upper shoreface and tidal channel sandstones respectively. Sandstone tongues 6 and 7 retrograded in relation to tongue 5, are very fine‐ to fine‐grained and hummocky cross‐stratified. These tongues were deposited in lower shoreface to offshore transition environments. The two lower fourth‐order sequences were deposited during normal regressions during slowly rising or stable relative sea level and represent the highstand systems tract. The three succeeding fourth‐order sequences, which show succeedingly increasing evidence of tidal influence, were deposited during falling and lowstand of relative sea level and represent the falling stage (forced regressive) and lowstand systems tracts. The uppermost two fourth‐order sequences were deposited during rapidly rising sea level in the transgressive systems tract. The maximum tidal influence occurred during lowstand progradation, in contrast to most other published examples reporting maximum tidal influence during transgression.  相似文献   

11.
This study documents a change from a non‐tidal to tide‐dominated shelf system that occurred between Corsica and Sardinia (the Bonifacio Basin, Western Mediterranean) during the early to middle Miocene. The non‐tidal deposits formed on a low‐energy siliciclastic shelf surrounded by progradational coralline algal ramps at full highstand. The tidal deposits consist of an up to 200 m thick succession of siliciclastic to coralline‐rich cross‐beds formed by large sub‐tidal dunes. Based on outcrop and sub‐surface data, it is possible to conclude that the tidal currents were amplified as a consequence of the rapid subsidence of the basin centre due to tectonic activity. It is suggested that this tectonic event initiated the strait between Corsica and Sardinia. The strait was deep enough to allow the tidal flux to be significantly increased, generating a localized strong tidal current at the junction between the Western Mediterranean and the East Corsica Basin.  相似文献   

12.
The Palaeoproterozoic Frere Formation (ca 1.89 Gyr old) of the Earaheedy Basin, Western Australia, is a ca 600 m thick succession of iron formation and fine‐grained, clastic sedimentary rocks that accumulated on an unrimmed continental margin with oceanic upwelling. Lithofacies stacking patterns suggest that deposition occurred during a marine transgression punctuated by higher frequency relative sea‐level fluctuations that produced five parasequences. Decametre‐scale parasequences are defined by flooding surfaces overlain by either laminated magnetite or magnetite‐bearing, hummocky cross‐stratified sandstone that grades upward into interbedded hematite‐rich mudstone and trough cross‐stratified granular iron formation. Each aggradational cycle is interpreted to record progradation of intertidal and tidal channel sediments over shallow subtidal and storm‐generated deposits of the middle shelf. The presence of aeolian deposits, mud cracks and absence of coarse clastics indicate deposition along an arid coastline with significant wind‐blown sediment input. Iron formation in the Frere Formation, in contrast to most other Palaeoproterozoic examples, was deposited almost exclusively in peritidal environments. These other continental margin iron formations also reflect upwelling of anoxic, Fe‐rich sea water, but accumulated in the full spectrum of shelf environments. Dilution by fine‐grained, windblown terrigenous clastic sediment probably prevented the Frere iron formation from forming in deeper settings. Lithofacies associations and interpreted paragenetic pathways of Fe‐rich lithofacies further suggest precipitation in sea water with a prominent oxygen chemocline. Although essentially unmetamorphosed, the complex diagenetic history of the Frere Formation demonstrates that understanding the alteration of iron formation is a prerequisite for any investigation seeking to interpret ocean‐atmosphere evolution. Unlike studies that focus exclusively on their chemistry, an approach that also considers palaeoenvironment and oceanography, as well the effects of post‐depositional fluid flow and alteration, mitigates the potential for incorrectly interpreting geochemical data.  相似文献   

13.
This study examined grain‐size distributions to address questions regarding geological and oceanographic controls on island morphodynamics along one of the longest undeveloped, mixed‐energy barrier island systems in the world. In particular, statistical analyses (i.e. analysis of variance, Tukey honest significant difference multiple comparison tests, nonparametric statistics and linear regression analysis) of 230 barrier island samples from Ocean City Inlet, Maryland, to the mouth of the Chesapeake Bay and 134 nearshore samples (d ≤ 10 m) identified grain‐size trends related to the morphodynamic characteristics of these systems. In general, the Virginia barrier islands north of Wachapreague Inlet and Assateague Island form a statistically different subset of grain sizes (medium‐grained to coarse‐grained sand) from the islands south of Wachapreague Inlet (fine‐grained sand). These textural trends corroborate the Pleistocene headlands of the Delmarva coastal compartment as the sediment source and indicate that some of the coarse‐grained to medium‐grained sediment bypasses the large sinks in the net southward longshore sediment transport system (i.e. Fishing Point and Chincoteague Inlet). This research also demonstrates that the preferential accumulation of coarse‐grained to medium‐grained sand on the ebb‐tidal delta at Wachapreague Inlet probably controls the erosional morphodynamics of the islands located downdrift (south) of the inlet. These results suggest that an increase in tidal prism, set up by sea‐level rise and/or a shift in wave climate/refraction patterns, may lead to barrier island fragmentation and a runaway transgression of this predominantly natural barrier island system. Consequently, a grain analysis of major coastal compartments, across multiple driving forces, can be used to assess coastal morphodynamics and the potential impact of climate change on coastal systems.  相似文献   

14.
15.
Eighteen coastal-plain depositional sequences that can be correlated to shallow- to deep-water clinoforms in the Eocene Central Basin of Spitsbergen were studied in 1 × 15 km scale mountainside exposures. The overall mud-prone (>300 m thick) coastal-plain succession is divided by prominent fluvial erosion surfaces into vertically stacked depositional sequences, 7–44 m thick. The erosion surfaces are overlain by fluvial conglomerates and coarse-grained sandstones. The fluvial deposits show tidal influence at their seaward ends. The fluvial deposits pass upwards into macrotidal tide-dominated estuarine deposits, with coarse-grained river-dominated facies followed further seawards by high- and low-sinuosity tidal channels, upper-flow-regime tidal flats, and tidal sand bar facies associations. Laterally, marginal sandy to muddy tidal flat and marsh deposits occur. The fluvial/estuarine sequences are interpreted as having accumulated as a series of incised valley fills because: (i) the basal fluvial erosion surfaces, with at least 16 m of local erosional relief, are regional incisions; (ii) the basal fluvial deposits exhibit a significant basinward facies shift; (iii) the regional erosion surfaces can be correlated with rooted horizons in the interfluve areas; and (iv) the estuarine deposits onlap the valley walls in a landward direction. The coastal-plain deposits represent the topset to clinoforms that formed during progradational infilling of the Eocene Central Basin. Despite large-scale progradation, the sequences are volumetrically dominated by lowstand fluvial deposits and especially by transgressive estuarine deposits. The transgressive deposits are overlain by highstand units in only about 30% of the sequences. The depositional system remained an estuary even during highstand conditions, as evidenced by the continued bedload convergence in the inner-estuarine tidal channels.  相似文献   

16.
Abstract Although shelf‐edge deltas are well‐imaged seismic features of Holocene and Pleistocene shelf margins, documented outcrop analogues of these important sand‐prone reservoirs are rare. The facies and stratigraphic architecture of an outcropping shelf‐edge delta system in the Eocene Battfjellet Formation, Spitsbergen, is presented here, as well as the implications of this delta system for the generation of sand‐prone, shelf‐margin clinoforms. The shelf‐edge deltas of the Battfjellet Formation on Litledalsfjellet and Høgsnyta produced a 3–5 × 15 km, shelf edge‐attached, slope apron (70 m of sandstones proximally, tapering to zero on the lower slope). The slope apron consists of distributary channel and mouth‐bar deposits in its shelf‐edge reaches, passing downslope to slope channels/chutes that fed turbiditic lobes and spillover sheets. In the transgressive phase of the slope apron, estuaries developed at the shelf edge, and these also produced minor lobes on the slope. The short‐headed mountainous rivers that drained the adjacent orogenic belt and fed the narrow shelf, and the shelf‐edge position of the discharging deltas, made an appropriate setting for the generation of hyperpycnal turbidity currents on the slope of the shelf margin. The abundance of organic matter and of coal fragments in the slope turbidites is consistent with this notion. Evidence that many of the slope turbidites were generated by sustained turbidity currents that waxed then waned includes the presence of scour surfaces and thick intervals of plane‐parallel laminae within turbidite beds in the slope channels, and thick spillover lobes with repetitive alternations of massive and flat‐laminated intervals. The examined shelf‐edge to slope system, now preserved mainly below the shelf break and dominated by sediment gravity‐flow deposits, has a threefold stratigraphic architecture: a lower, progradational part, in which the clinoforms have a slight downward‐directed trajectory; a thin aggradational zone; and an upper part in which clinoforms backstep up onto the shelf edge. A greatly increased density of erosional channels and chutes marks the regressive‐to‐transgressive turnaround within the slope apron, and this zone becomes an angular unconformity up near the shelf edge. This unconformity, with both subaerial and subaqueous components, is interpreted as a sequence boundary and developed by vigorous sand delivery and bypass across the shelf edge during the time interval of falling relative sea level. The studied shelf‐margin clinoforms accreted mostly during falling stage (sea level below the shelf edge), but the outer shelf later became estuarine as sea level became re‐established above the shelf edge.  相似文献   

17.
The south Australian Eucla Shelf belongs to the world's largest cool-water carbonate sedimentary system. During the Pleistocene, it exported large amounts of sediment to the shelf edge and upper slope resulting in an expanded sedimentary wedge. Wedge-internal clinoforming seismic reflectors suggest a stacking of the deposits into genetic sequences. High-resolution stable oxygen and carbon isotope, point counting, grain size, and carbonate mineralogical XRD analyses were carried out to characterize these genetic sequences along a dip-parallel transect of three ODP Leg 182 drill holes located between the shelf edge and upper slope. Oxygen and carbon isotope fluctuations show that the genetic sequences formed as a response to sea level fluctuations. Within the genetic sequences, facies differentiation and sediment volume partitioning occur along the transect. Lowstand deposits are fine grained and contain more sponge spicules and micrite. Highstand deposits are coarse grained with tunicate spicules, brown bioclasts, as well as bryozoan and corallinacean debris. Boundaries separating highstand and lowstand deposits are triggered by sea level fall, and are expressed as abrupt grain size changes or as turning points in grain-size trends. Analyzed components vary in abundance along the transect. Genetic sequences show dip-parallel variations in thickness combined with changing relative proportions of lowstand versus highstand deposits.  相似文献   

18.
The Upper Cretaceous (Campanian–Maastrichtian) bioclastic wedge of the Orfento Formation in the Montagna della Maiella, Italy, is compared to newly discovered contourite drifts in the Maldives. Like the drift deposits in the Maldives, the Orfento Formation fills a channel and builds a Miocene delta‐shaped and mounded sedimentary body in the basin that is similar in size to the approximately 350 km2 large coarse‐grained bioclastic Miocene delta drifts in the Maldives. The composition of the bioclastic wedge of the Orfento Formation is also exclusively bioclastic debris sourced from the shallow‐water areas and reworked clasts of the Orfento Formation itself. In the near mud‐free succession, age‐diagnostic fossils are sparse. The depositional textures vary from wackestone to float‐rudstone and breccia/conglomerates, but rocks with grainstone and rudstone textures are the most common facies. In the channel, lensoid convex‐upward breccias, cross‐cutting channelized beds and thick grainstone lobes with abundant scours indicate alternating erosion and deposition from a high‐energy current. In the basin, the mounded sedimentary body contains lobes with a divergent progradational geometry. The lobes are built by decametre thick composite megabeds consisting of sigmoidal clinoforms that typically have a channelized topset, a grainy foreset and a fine‐grained bottomset with abundant irregular angular clasts. Up to 30 m thick channels filled with intraformational breccias and coarse grainstones pinch out downslope between the megabeds. In the distal portion of the wedge, stacked grainstone beds with foresets and reworked intraclasts document continuous sediment reworking and migration. The bioclastic wedge of the Orfento Formation has been variously interpreted as a succession of sea‐level controlled slope deposits, a shoaling shoreface complex, or a carbonate tidal delta. Current‐controlled delta drifts in the Maldives, however, offer a new interpretation because of their similarity in architecture and composition. These similarities include: (i) a feeder channel opening into the basin; (ii) an excavation moat at the exit of the channel; (iii) an overall mounded geometry with an apex that is in shallower water depth than the source channel; (iv) progradation of stacked lobes; (v) channels that pinch out in a basinward direction; and (vi) smaller channelized intervals that are arranged in a radial pattern. As a result, the Upper Cretaceous (Campanian–Maastrichtian) bioclastic wedge of the Orfento Formation in the Montagna della Maiella, Italy, is here interpreted as a carbonate delta drift.  相似文献   

19.
Heterozoan temperate‐water carbonates mixed with varying amounts of terrigenous grains and muddy matrix (Azagador limestone) accumulated on and at the toe of an inherited escarpment during the late Tortonian–early Messinian (late Miocene) at the western margin of the Almería–Níjar Basin in south‐east Spain. The escarpment was the eastern end of an uplifting antiform created by compressive folding of Triassic rocks of the Betic basement. Channelized coralline‐algal/bryozoan rudstone to coarse‐grained packstone, together with matrix‐supported conglomerate, are the dominant lithofacies in the higher outcrops, comprising the deposits on the slope. These sediments mainly fill small canyon‐shaped, half‐graben depressions formed by normal faults active before, during and after carbonate sedimentation. Roughly bedded and roughly laminated coralline‐algal/bryozoan rudstone to coarse‐grained packstone are the main lithofacies forming an apron of four small (kilometre‐scale) lobes at the toe of the south‐eastern side of the escarpment (Almería area). Channelized and roughly bedded coralline‐algal/bryozoan rudstone to coarse‐grained packstone, conglomerates, packstone and sandy silt accumulated in a small channel‐lobe system at the toe of the north‐eastern side of the escarpment (Las Balsas area). Carbonate particles and terrigenous grains were sourced from shallow‐water settings and displaced downslope by sediment density flows that preferentially followed the canyon‐shaped depressions. Roughly laminated rudstone to packstone formed by grain flows on the initially very steep slope, whereas the rest of the carbonate lithofacies were deposited by high‐density turbidite currents. The steep escarpment and related break‐in‐slope at the toe favoured hydraulic jumps and the subsequent deposition of coarse‐grained, low‐transport efficiency skeletal‐dominated sediment in the apron lobes. Accelerated uplift of the basement caused a relative sea‐level fall resulting in the formation of outer‐ramp carbonates on the apron lobes, which were in turn overlain by lower Messinian coral reefs. The Almería example is the first known ‘base of slope’ apron within temperate‐water carbonate systems.  相似文献   

20.
During the Late Tortonian, platform‐margin‐prograding clinoforms developed at the south‐western margin of the Guadix Basin. Large‐scale wedge‐shaped deposits here comprise 26 rhythms of mixed carbonate–siliciclastic bedset packages and marl beds. These sediments were deposited on a shallow‐water, temperate‐carbonate distally steepened ramp. A downslope‐migrating sandwave field developed in this ramp, with sandwaves moving progressively down the ramp to the ramp‐slope, where they destabilized, folded and occasionally collapsed. Downslope sandwave migration was induced by currents flowing basinwards. During the Late Tortonian, the Guadix Basin was open north to the Atlantic Ocean via the Dehesas de Guadix Strait and connected east to the Mediterranean Sea through the Almanzora Corridor. According to the proposed current circulation model for the Guadix Basin for this time, surface marine currents from the Atlantic entered the basin from the northern seaway. These currents moved counter‐clockwise and shifted the sediment on the ramp, forming sandwaves that migrated downslope. The development of platform‐margin prograding clinoforms by the basinward sediment‐transport mechanisms inferred here is known relatively poorly in the ancient sedimentary record. Moreover, these wedge‐shaped geometries are similar to those found in some shelves in the Western Mediterranean Sea and could represent an outcrop analogue to (sub)‐recent, platform‐margin clinoforms revealed by high‐resolution seismic studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号