首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   214篇
  免费   19篇
  国内免费   2篇
测绘学   3篇
大气科学   29篇
地球物理   59篇
地质学   73篇
海洋学   11篇
天文学   20篇
自然地理   40篇
  2023年   1篇
  2022年   2篇
  2021年   11篇
  2020年   8篇
  2019年   10篇
  2018年   24篇
  2017年   15篇
  2016年   20篇
  2015年   13篇
  2014年   7篇
  2013年   24篇
  2012年   13篇
  2011年   11篇
  2010年   16篇
  2009年   8篇
  2008年   6篇
  2007年   12篇
  2006年   11篇
  2005年   2篇
  2004年   6篇
  2003年   3篇
  2002年   3篇
  2001年   1篇
  2000年   1篇
  1999年   1篇
  1996年   1篇
  1995年   1篇
  1983年   1篇
  1980年   2篇
  1945年   1篇
排序方式: 共有235条查询结果,搜索用时 15 毫秒
1.
Configurational changes with temperature are important for the thermodynamic and transport properties of most aluminosilicate melts, but in general are not well understood. Here, we present high-resolution 27Al and 17O NMR data on several calcium aluminosilicate glasses prepared with varying quench rates and thus with fictive temperatures that span ranges up to about 200 K. In all compositions the content of five-coordinated aluminum increases with fictive temperature, in agreement with recent high temperature NMR data on melts. In a glass of CaAl2Si2O8 (“anorthite”) composition, the content of non-bridging oxygens also increases with temperature; however this effect was not observed in a sample with a much higher CaO/Al2O3 ratio. We present a consistent notation for reactions among structural species in these systems that clarify why in some cases, high-coordinated network cations may appear on the same side of the reaction, while in others they occur on the opposite sides: the key difference is in accounting for all coordination changes for oxygens. Mixing of non-bridging oxygens and of high-coordinated aluminum make significant contributions to the overall configurational entropy and heat capacity of the melts, as does the mixing of various bridging oxygens and of tetrahedral network cations. Other, less well known, types of increase in disorder with temperature may be important as well.  相似文献   
2.
3.
Current land-use classifications used to assess urbanization effects on stream water quality date back to the 1980s when limited information was available to characterize watershed attributes that mediate non-point source pollution. With high resolution remote sensing and widely used GIS tools, there has been a vast increase in the availability and precision of geospatial data of built environments. In this study, we leverage geospatial data to expand the characterization of developed landscapes and create a typology that allows us to better understand the impact of complex developed landscapes across the rural to urban gradient. We assess the ability of the developed landscape typology to reveal patterns in stream water chemistry previously undetected by traditional land-cover based classification. We examine the distribution of land-cover, infrastructure, topography and geology across 3876 National Hydrography Dataset Plus catchments in the Piedmont region of North Carolina, USA. From this dataset, we generate metrics to evaluate the abundance, density and position of landscape features relative to streams, catchment outlets and topographic wetness metrics. While impervious surfaces are a key distinguishing feature of the urban landscape, sanitary infrastructure, population density and geology are better predictors of baseflow stream water chemistry. Unsupervised clustering was used to generate a distinct developed landscape typology based on the expanded, high-resolution landscape feature information. Using stream chemistry data from 37 developed headwater catchments, we compared the baseflow water chemistry grouped by traditional land-cover based classes of urbanization (rural, low, medium and high density) to our composition and structure-based classification (a nine-class typology). The typology based on 22 metrics of developed landscape composition and structure explained over 50% of the variation in NO3-N, TDN, DOC, Cl, and Br concentration, while the ISC-based classification only significantly explained 23% of the variation in TDN. These results demonstrate the importance of infrastructure, population and geology in defining developed landscapes and improving discrete classes for water management.  相似文献   
4.
Abstract

Natural resource challenges often span administrative jurisdictions and include actors and processes operating at different spatial and political scales. We applied concepts of new environmental governance to analyze Oregon’s approach to greater sage-grouse conservation. Through one in-depth case study in Lake County, we traced features of new environmental governance (cross-scale interactions, decentralization, and capacities of actors) through different governance levels. Interviews and qualitative analysis revealed that decentralization of administrative functions facilitated cross-scale interactions and relied on intermediaries, gap-filling, and perceptions of legitimacy at lower levels. State and agency guidelines steered the effort and were accompanied by financial and technical resources from multiple arenas, which increased local capacity. This study adds to the understandings of environmental governance for implementing multi-actor, multi-level conservation arrangements in resource-dependent communities. Further exploration of connections between higher levels and local contexts will reveal important, new ways to link policies with on-the-ground outcomes.  相似文献   
5.
During German R/V Meteor M67/2 expedition to Campeche Knolls, southern Gulf of Mexico, a set of 2D high resolution seismic data was acquired to study the near-surface sediment structure and its relationship with hydrocarbon seepages in this salt province. The comprehensive survey covered 20 individual bathymetric highs or ridges and identified three principle structural types: Passive Type, Chaopopte Type, and Asymmetric Flap Type. The first type is the result of passive diapirism, whereas the latter two were initialized by a regional compressional event in the Miocene, but are later differently modified by salt tectonism. Chapopote Type structures appear as symmetrical domes, with uplifted coarse-grained Miocene sediments in their cores and rather thin syn-kinematic sediments covering the crests. Asymmetric Flap Type structures are also first folded as domes or ridges, but one flap later subsided together with salt evacuation, resulting in single uplifted monoclines. With the coarse-grained pre-kinematic sediments as reservoir units, both structural types can focus and accumulate hydrocarbons. The geometries of the structures suggest that hydrocarbons are accumulated in the center of the Chapopote Type structures and in the subsided flaps of the Asymmetric Flap Type structures. Hydrocarbon leakage from these thinly sealed reservoirs is regarded as the principle mechanism for the seepage in the study area, and accordingly the most seepage-prone positions are above these reservoirs. The seep locations suggested by analysis of sea-surface oil slick images of SAR satellite data are also examined in this study. These independently derived seep locations confirm the seepage-prone positions to be above the shallow buried reservoirs. This study suggest that the shallow sediment structures control the distribution of the hydrocarbon seeps of the north-western Campeche Knolls, although the hydrocarbons are sourced from the greater depth.  相似文献   
6.
This paper examines the dynamics of energy investments and clean energy Research and Development (R&D) using a scenario-based modeling approach. Starting from the global scenarios proposed in the RoSE model ensemble experiment, we analyze the dynamics of investments under different assumptions regarding economic and population growth as well as availability of fossil fuel resources, in the absence of a climate policy. Our analysis indicates that economic growth and the speed of income convergence across countries matters for improvements in energy efficiency, both via dedicated R&D investments but mostly through capital-energy substitution. In contrast, fossil fuel prices, by changing the relative competitiveness of energy sources, create an economic opportunity for radical innovation in the energy sector. Indeed, our results suggest that fossil fuel availability is the key driver of investments in low carbon energy innovation. However, this innovation, by itself, is not sufficient to induce emission reductions compatible with climate stabilization objectives.  相似文献   
7.
This article assesses Japan's carbon budgets up to 2100 in the global efforts to achieve the 2?°C target under different effort-sharing approaches based on long-term GHG mitigation scenarios published in 13 studies. The article also presents exemplary emission trajectories for Japan to stay within the calculated budget.

The literature data allow for an in-depth analysis of four effort-sharing categories. For a 450?ppm CO2e stabilization level, the remaining carbon budgets for 2014–2100 were negative for the effort-sharing category that emphasizes historical responsibility and capability. For the other three, including the reference ‘Cost-effectiveness’ category, which showed the highest budget range among all categories, the calculated remaining budgets (20th and 80th percentile ranges) would run out in 21–29 years if the current emission levels were to continue. A 550?ppm CO2e stabilization level increases the budgets by 6–17 years-equivalent of the current emissions, depending on the effort-sharing category. Exemplary emissions trajectories staying within the calculated budgets were also analysed for ‘Equality’, ‘Staged’ and ‘Cost-effectiveness’ categories. For a 450?ppm CO2e stabilization level, Japan's GHG emissions would need to phase out sometime between 2045 and 2080, and the emission reductions in 2030 would be at least 16–29% below 1990 levels even for the most lenient ‘Cost-effectiveness’ category, and 29–36% for the ‘Equality’ category. The start year for accelerated emissions reductions and the emissions convergence level in the long term have major impact on the emissions reduction rates that need to be achieved, particularly in the case of smaller budgets.

Policy relevance

In previous climate mitigation target formulation processes for 2020 and 2030 in Japan, neither equity principles nor long-term management of cumulative GHG emissions was at the centre of discussion. This article quantitatively assesses how much more GHGs Japan can emit by 2100 to achieve the 2?°C target in light of different effort-sharing approaches, and how Japan's GHG emissions can be managed up to 2100. The long-term implications of recent energy policy developments following the Fukushima nuclear disaster for the calculated carbon budgets are also discussed.  相似文献   
8.
9.

Blackouts aggravate the situation during an extreme river-flood event by affecting residents and visitors of an urban area. But also rescue services, fire brigades and basic urban infrastructure such as hospitals have to operate under suboptimal conditions. This paper aims to demonstrate how affected people, critical infrastructure, such as electricity, roads and civil protection infrastructure are intertwined during a flood event, and how this can be analysed in a spatially explicit way. The city of Cologne (Germany) is used as a case study since it is river-flood prone and thousands of people had been affected in the floods in 1993 and 1995. Components of vulnerability and resilience assessments are selected with a focus of analysing exposure to floods, and five steps of analysis are demonstrated using a geographic information system. Data derived by airborne and spaceborne earth observation to capture flood extent and demographic data are combined with place-based information about location and distance of objects. The results illustrate that even fire brigade stations, hospitals and refugee shelters are within the flood scenario area. Methodologically, the paper shows how criticality of infrastructure can be analysed and how static vulnerability assessments can be improved by adding routing calculations. Fire brigades can use this information to improve planning on how to access hospitals and shelters under flooded road conditions.

  相似文献   
10.
The particulate organic matter (POM) in hydrodynamically variable habitats such as the lower reaches of estuaries can change in its content and quality on very short time scales (example, hourly), and these changes can potentially influence higher-level consumers in river-estuary-marine systems. Estuarine water samples were collected hourly for 12 h downstream in a small river to evaluate the fatty acid composition of POM over a tidal cycle. Fatty acid constituents of POM collected during the flood tide were dominated by the saturated, higher plant and bacterial fatty acids, whereas unsaturated, polyunsaturated, essential, and diatom-associated fatty acids dominated the POM collected during the ebb tide. Elevated algal biomass (as indicated by high chlorophyll a concentrations), diatom, and freshness indices in the POM indicated enhanced fresh autochthonous-origin materials that dominated the mixed organic pool during the ebb tide compared to more degraded detritus during the flood tide. Tidal retention of organic matter and algal primary production were the most influential factors that differentiated the fatty acid composition of estuarine POM over the short time scale. The results of this study have important implications on the quality of POM at the time of sampling, especially in estuaries where mixed organic pools have multiple inputs and are strongly influenced by tidal cycles.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号