首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6011篇
  免费   264篇
  国内免费   50篇
测绘学   179篇
大气科学   580篇
地球物理   1373篇
地质学   1930篇
海洋学   594篇
天文学   1034篇
综合类   17篇
自然地理   618篇
  2023年   16篇
  2022年   20篇
  2021年   84篇
  2020年   90篇
  2019年   101篇
  2018年   154篇
  2017年   133篇
  2016年   204篇
  2015年   155篇
  2014年   189篇
  2013年   327篇
  2012年   282篇
  2011年   357篇
  2010年   286篇
  2009年   369篇
  2008年   345篇
  2007年   316篇
  2006年   278篇
  2005年   241篇
  2004年   247篇
  2003年   220篇
  2002年   201篇
  2001年   150篇
  2000年   148篇
  1999年   130篇
  1998年   140篇
  1997年   91篇
  1996年   93篇
  1995年   62篇
  1994年   63篇
  1993年   67篇
  1992年   51篇
  1991年   60篇
  1990年   37篇
  1989年   42篇
  1988年   35篇
  1987年   50篇
  1986年   33篇
  1985年   53篇
  1984年   57篇
  1983年   43篇
  1982年   42篇
  1981年   32篇
  1980年   32篇
  1979年   26篇
  1978年   16篇
  1977年   17篇
  1976年   17篇
  1975年   16篇
  1971年   11篇
排序方式: 共有6325条查询结果,搜索用时 218 毫秒
1.
When the observation of small headwater catchments in the pre-Alpine Alptal valley (central Switzerland) started in the late 1960s, the researchers were mainly interested in questions related to floods and forest management. Investigations of geomorphological processes in the steep torrent channels followed in the 1980s, along with detailed observations of biogeochemical and ecohydrological processes in individual forest stands. More recently, research in the Alptal has addressed the impacts of climate change on water supply and runoff generation. In this article, we describe, for the first time, the evolution of catchment research at Alptal, and present new analyses of long-term trends and short-term hydrologic behaviour. Hydrometeorological time series from the past 50 years show substantial interannual variability, but only minimal long-term trends, except for the ~2°C increase in mean annual air temperature over the 50-year period, and a corresponding shift towards earlier snowmelt. Similar to previous studies in larger Alpine catchments, the decadal variations in mean annual runoff in Alptal's small research catchments reflect the long-term variability in annual precipitation. In the Alptal valley, the most evident hydrological trends were observed in late spring and are related to the substantial change in the duration of the snow cover. Streamflow and water quality are highly variable within and between hydrological events, suggesting rapid shifts in flow pathways and mixing, as well as changing connectivity of runoff-generating areas. This overview illustrates how catchment research in the Alptal has evolved in response to changing societal concerns and emerging scientific questions.  相似文献   
2.
Understanding changes in evapotranspiration during forest regrowth is essential to predict changes of stream runoff and recovery after forest cutting. Canopy interception (Ic) is an important component of evapotranspiration, however Ic changes and the impact on stream runoff during regrowth after cutting remains unclear due to limited observations. The objective of this study was to examine the effects of Ic changes on long-term stream runoff in a regrowth Japanese cedar and Japanese cypress forest following clear-cutting. This study was conducted in two 1-ha paired headwater catchments at Fukuroyamasawa Experimental Watershed in Japan. The catchments were 100% covered by Japanese coniferous plantation forest, one of which was 100% clear-cut in 1999 when the forest was 70 years old. In the treated catchment, annual runoff increased by 301 mm/year (14% of precipitation) the year following clear-cutting, and remained 185 mm/year (7.9% of precipitation) higher in the young regrowth forest for 12–14 years compared to the estimated runoff assuming no clear-cutting. The Ic change was −358 mm/year (17% of precipitation) after cutting and was −168 mm/year (6.7% of precipitation) in the 12–14 years old regrowth forest compared to the observed Ic during the pre-cutting period. Stream runoff increased in all seasons, and the Ic change was the main fraction of evapotranspiration change in all seasons throughout the observation period. These results suggest that the change in Ic accounted for most of the runoff response following forest cutting and the subsequent runoff recovery in this coniferous forest.  相似文献   
3.
Soil water dynamics are central in linking and regulating natural cycles in ecohydrology, however, mathematical representation of soil water processes in models is challenging given the complexity of these interactions. To assess the impacts of soil water simulation approaches on various model outputs, the Soil and Water Assessment Tool was modified to accommodate an alternative soil water percolation method and tested at two geographically and climatically distinct, instrumented watersheds in the United States. Soil water was evaluated at the site scale via measured observations, and hydrologic and biophysical outputs were analysed at the watershed scale. Results demonstrated an improved Kling–Gupta Efficiency of up to 0.3 and a reduction in percent bias from 5 to 25% at the site scale, when soil water percolation was changed from a threshold, bucket-based approach to an alternative approach based on variable hydraulic conductivity. The primary difference between the approaches was attributed to the ability to simulate soil water content above field capacity for successive days; however, regardless of the approach, a lack of site-specific characterization of soil properties by the soils database at the site scale was found to severely limit the analysis. Differences in approach led to a regime shift in percolation from a few, high magnitude events to frequent, low magnitude events. At the watershed scale, the variable hydraulic conductivity-based approach reduced average annual percolation by 20–50 mm, directly impacting the water balance and subsequently biophysical predictions. For instance, annual denitrification increased by 14–24 kg/ha for the new approach. Overall, the study demonstrates the need for continued efforts to enhance soil water model representation for improving biophysical process simulations.  相似文献   
4.
We describe a partial filament eruption on 11 December 2011 that demonstrates that the inclusion of mass is an important next step for understanding solar eruptions. Observations from the Solar Terrestrial Relations Observatory-Behind (STEREO-B) and the Solar Dynamics Observatory (SDO) spacecraft were used to remove line-of-sight projection effects in filament motion and correlate the effect of plasma dynamics with the evolution of the filament height. Flux cancellation and nearby flux emergence are shown to have played a role in increasing the height of the filament prior to eruption. The two viewpoints allow the quantitative estimation of a large mass-unloading, the subsequent radial expansion, and the eruption of the filament to be investigated. A 1.8 to 4.1 lower-limit ratio between gravitational and magnetic-tension forces was found. We therefore conclude that following the loss-of-equilibrium of the flux-rope, the radial expansion of the flux-rope was restrained by the filamentary material until 70% of the mass had evacuated the structure through mass-unloading.  相似文献   
5.
The formal opportunity to learn geography in the United States is unevenly distributed across space, creating possible geography deserts. Data on the number of exams taken in Advanced Placement Human Geography (APHG) and bachelor’s degrees earned in geography are mapped at the state and regional scales. Normalized rates are ranked and grouped into quintiles. For APHG exams, states in the southeastern region of the United States are in the uppermost quintiles while states in the northeastern region are in the lowermost quintiles. The pattern for bachelor’s degrees in geography is somewhat the spatial inverse of that for APHG.  相似文献   
6.
Evaluation of slope stability, especially in the absence of a proper bed such as marine soils, is one of the most important issues in geotechnical engineering. Using geogrid layers to enhance the strength and stability of embankments is regarded as a commendable stabilization method. On the other hand, groundwater level erratically fluctuates in coastal areas. Therefore, the aim of this research is to study the effects of groundwater level changes on stability of a geogrid-reinforced slope on loose marine soils in Qeshm Island, Iran. At first, geotechnical properties of the site were obtained by comprehensive series of geotechnical laboratory and in situ tests. Then, by simultaneous changes of groundwater level and several parameters such as embankment slope, loading, geogrid length, geogrid number, and tensile strength of geogrid, different characteristics such as embankment safety factor (SF), vertical and horizontal displacements at embankment top and embankment base were studied. It was observed that groundwater level had significant effects on behavior of the embankment. For most of the observations, by decreasing the groundwater level, the displacements decreased and consequently safety factor increased. Increasing the length, number, and tensile strength of geogrid led to the reduction of displacements and an increase in the safety factor.  相似文献   
7.
8.
Book reviews     
Howard  R. F.  van den Oord  G. H. J.  Švestka  Z. 《Solar physics》1996,169(1):225-227
  相似文献   
9.
10.
A simulation model of the adaptive optics of the German Vacuum Tower Telescope (VTT), Observatorio del Teide, Tenerife, is presented. The model uses modules from the integrated model of the Euro50 extremely large telescope, and includes submodels of a Shack-Hartmann wavefront sensor, a de-formable mirror, a tip-tilt mirror, high-voltage amplifier low-pass filters, a reconstructor and a controller. We investigate the impact on the closed loop bandwidth of changes in controller configuration and certain system parameters, such as low pass filter bandwidth and camera integration and readout time. Control strategies were tested on simple models before implementation on the full VTT model. Using the models, different control strategies are compared.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号