首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2711篇
  免费   121篇
  国内免费   20篇
测绘学   56篇
大气科学   185篇
地球物理   740篇
地质学   833篇
海洋学   226篇
天文学   469篇
综合类   3篇
自然地理   340篇
  2021年   32篇
  2020年   31篇
  2019年   35篇
  2018年   71篇
  2017年   52篇
  2016年   84篇
  2015年   65篇
  2014年   77篇
  2013年   157篇
  2012年   92篇
  2011年   130篇
  2010年   104篇
  2009年   149篇
  2008年   133篇
  2007年   122篇
  2006年   113篇
  2005年   107篇
  2004年   96篇
  2003年   85篇
  2002年   89篇
  2001年   59篇
  2000年   63篇
  1999年   48篇
  1998年   45篇
  1997年   47篇
  1996年   48篇
  1995年   45篇
  1994年   32篇
  1993年   39篇
  1992年   45篇
  1991年   39篇
  1990年   35篇
  1989年   22篇
  1988年   20篇
  1987年   20篇
  1986年   23篇
  1985年   31篇
  1984年   37篇
  1983年   34篇
  1982年   28篇
  1981年   31篇
  1980年   25篇
  1979年   24篇
  1978年   29篇
  1977年   30篇
  1976年   14篇
  1975年   18篇
  1974年   16篇
  1973年   20篇
  1967年   10篇
排序方式: 共有2852条查询结果,搜索用时 62 毫秒
1.
The giant impact hypothesis is the dominant theory explaining the formation of our Moon. However, the inability to produce an isotopically similar Earth–Moon system with correct angular momentum has cast a shadow on its validity. Computer-generated impacts have been successful in producing virtual systems that possess many of the observed physical properties. However, addressing the isotopic similarities between the Earth and Moon coupled with correct angular momentum has proven to be challenging. Equilibration and evection resonance have been proposed as means of reconciling the models. In the summer of 2013, the Royal Society called a meeting solely to discuss the formation of the Moon. In this meeting, evection resonance and equilibration were both questioned as viable means of removing the deficiencies from giant impact models. The main concerns were that models were multi-staged and too complex. We present here initial impact conditions that produce an isotopically similar Earth–Moon system with correct angular momentum. This is done in a single-staged simulation. The initial parameters are straightforward and the results evolve solely from the impact. This was accomplished by colliding two roughly half-Earth-sized impactors, rotating in approximately the same plane in a high-energy, off-centered impact, where both impactors spin into the collision.  相似文献   
2.
A FORTRAN program, consistent with the commercially available finite element (FE) code ABAQUS, is developed based on a three-dimensional (3D) linear elastic brittle damage constitutive model with two damage criteria. To consider the heterogeneity of rock, the developed FORTRAN program is used to set the stiffness and strength properties of each element of the FE model following a Weibull distribution function. The reliability of the program is assessed against available experimental results for granite cylindrical specimens with a throughgoing, flat and inclined fissure. The calibration procedure of the material parameters is explained in detail, and it is shown that the compressive to tensile strength ratio can have a substantial influence on the failure response of the specimens. Numerical simulations are conducted for models with different levels of heterogeneity. The results show a smaller load bearing capacity for models with less homogeneity, representing gradual coalescence of fully damaged elements forming throughout the models during loading. The maximum load bearing capacity is studied for various combinations of inclination angles of two centrally aligned, throughgoing and flat fissures of equal length embedded in cylindrical models under uniaxial and multiaxial loading conditions. The key role of the compressive to tensile strength ratio is highlighted by repeating certain simulations with a lower compressive to tensile strength ratio. It is proven that the peak loads of the rock models with sufficiently small compressive to tensile strength ratios containing two throughgoing fissures of equal length are similar, provided that the minimum inclination angles of the models are the same. The results are presented and discussed with respect to the existing experimental findings in the literature, suggesting that the numerical model applied in this study can provide useful insight into the failure behaviour of rock-like materials.  相似文献   
3.
This paper presents a detailed numerical study of the retrogressive failure of landslides in sensitive clays. The dynamic modelling of the landslides is carried out using a novel continuum approach, the particle finite element method, complemented with an elastoviscoplastic constitutive model. The multiwedge failure mode in the collapse is captured successfully, and the multiple retrogressive failures that have been widely observed in landslides in sensitive clays are reproduced with the failure mechanism, the kinematics, and the deposition being discussed in detail. Special attention has been paid to the role of the clay sensitivity on each retrogressive failure as well as on the final retrogression distance and the final run‐out distance via parametric studies. Moreover, the effects of the viscosity of sensitive clays on the failure are also investigated for different clay sensitivities.  相似文献   
4.
5.
The development of coal forests during the Carboniferous is one of the best-known episodes in the history of life. Although often reconstructed as steamy tropical rainforests, these ancient ecosystems were a far cry from anything we might encounter in the Amazon today. Bizarre giant club-mosses, horsetails and tree ferns were the dominant plants, not flowering trees as in modern rainforests. At their height, coal forests stretched all the way from Kansas to Kazakhstan, spanning the entire breadth of tropical Pangaea. Most of what we know of their biodiversity and ecology has been quite literally mined out of the ground through two centuries of hard labour. Without coal mining, our knowledge would be greatly impoverished. Over the past few years, we've been exploring underground coal mines in the United States, where entire forested landscapes have been preserved intact over huge areas. Never before have geologists had the opportunity to walk out through mile upon mile of fossilized forest. In this feature article, we describe some of our recent explorations and attempt to shed new light on these old fossils.  相似文献   
6.
7.
Several physical and observational effects may contribute to the significant imbalances of magnetic flux that are often observed in active regions. We consider an effect not previously treated: the influence of electric currents in the photosphere. Electric currents can cause a line-of-sight flux imbalance because of the directionality of the magnetic field they produce. Currents associated with magnetic flux tubes produce larger imbalances than do smoothly-varying distributions of flux and current. We estimate the magnitude of this effect for current densities, total currents, and magnetic geometry consistent with observations. The expected imbalances lie approximately in the range 0–15%, depending on the character of the current-carrying fields and the angle from which they are viewed. Observationally, current-induced flux imbalances could be indicated by a statistical dependence of the imbalance on angular distance from disk center. A general study of magnetic flux balance in active regions is needed to determine the relative importance of other - probably larger -effects such as dilute flux (too weak to measure or rendered invisible by radiative transfer effects), merging with weak background fields, and long-range connections between active regions.Operated for the National Science Foundation by the Association of Universities for Research in Astronomy.  相似文献   
8.
The finite‐element formulation and integration algorithms developed in Part I are used to analyse a number of practical problems involving unsaturated and saturated soils. The formulation and algorithms perform well for all the cases analysed, with the robustness of the latter being largely insensitive to user‐defined parameters such as the number of coarse time steps and error control tolerances. The efficiency of the algorithms, as measured by the CPU time consumed, does not depend on the number of coarse time steps, but may be influenced by the error control tolerances. Based on the analyses presented here, typical values for the error control tolerances are suggested. It is also shown that the constitutive modelling framework presented in Part I can, by adjusting one constitutive equation and one or two material parameters, be used to simulate soils that expand or collapse upon wetting. Treating the suction as a strain variable instead of a stress variable proves to be an efficient and robust way of solving suction‐dependent plastic yielding. Moreover, the concept of the constitutive stress is a particularly convenient way of handling the transition between saturation and unsaturation. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   
9.
Observations of the interstellar medium reveal a dynamic realm permeated by shocks. These shocks are generated on a large range of scales by galactic rotation, supernovae, stellar winds, and other processes. Whenever a shock encounters a density interface, Richtmyer-Meshkov instabilities may develop. Perturbations along the interface grow, leading to structure formation and material mixing. An understanding of the evolution of Richtmyer-Meshkov instabilities is essential for understanding galactic structure, molecular cloud morphology, and the early stages of star formation. An ongoing experimental campaign studies Richtmyer-Meshkov mixing in a convergent, compressible, miscible plasma at the Omega laser facility. Cylindrical targets, consisting of a low density foam core and an aluminum shell covered by an epoxy ablator, are directly driven by fifty laser beams. The aluminum shell is machined to produce different perturbation spectra. Surface types include unperturbed (smooth), single-mode sinusoids, multi-mode (rough), and multi-mode with particular modes accentuated (specified-rough). Experimental results are compared to theory and numerical simulations.  相似文献   
10.
The outer layers of Sun-like stars are regions of rapid spatial variation which modulate the p-mode frequencies by partially reflecting the constituent acoustic waves. With the accuracy that has been achieved by current solar observations, and that is expected from imminent stellar observations, this modulation can be observed from the spectra of the low-degree modes. We present a new and simple theoretical calculation to determine the leading terms in an asymptotic expansion of the outer phase of these modes, which is determined by the structure of the surface layers of the star. Our procedure is to compare the stellar envelope with a plane-parallel polytropic envelope, which we regard as a smooth reference background state. Then we can isolate a seismic signature of the acoustic phase and relate it to the stratification of the outer layers of the convection zone. One can thereby constrain theories of convection that are used to construct the convection zones of the Sun and Sun-like stars. The accuracy of the diagnostic is tested in the solar case by comparing the predicted outer phase with an exact numerical calculation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号