首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   17篇
  免费   0篇
  国内免费   1篇
大气科学   5篇
地球物理   3篇
地质学   6篇
海洋学   1篇
天文学   2篇
自然地理   1篇
  2013年   1篇
  2011年   2篇
  2010年   1篇
  2009年   1篇
  2007年   1篇
  2005年   2篇
  2002年   1篇
  2000年   1篇
  1999年   1篇
  1998年   2篇
  1997年   1篇
  1996年   1篇
  1990年   3篇
排序方式: 共有18条查询结果,搜索用时 31 毫秒
1.
Mechanisms of fractional crystallization with simultaneous crustalassimilation (AFC) are examined for the Kutsugata and Tanetomilavas, an alkali basalt–dacite suite erupted sequentiallyfrom Rishiri Volcano, northern Japan. The major element variationswithin the suite can be explained by boundary layer fractionation;that is, mixing of a magma in the main part of the magma bodywith a fractionated interstitial melt transported from the mushyboundary layer at the floor. Systematic variations in SiO2 correlatewith variations in the Pb, Sr and Nd isotopic compositions ofthe lavas. The geochemical variations of the lavas are explainedby a constant and relatively low ratio of assimilated mass tocrystallized mass (‘r value’). In the magma chamberin which the Kutsugata and Tanetomi magmas evolved, a strongthermal gradient was present and it is suggested that the marginalpart of the reservoir was completely solidified. The assimilantwas transported by crack flow from the partially fused floorcrust to the partially crystallized floor mush zone throughfractures in the solidified margin, formed mainly by thermalstresses resulting from cooling of the solidified margin andheating of the crust. The crustal melt was then mixed with thefractionated interstitial melt in the mushy zone, and the mixedmelt was further transported by compositional convection tothe main magma, causing its geochemical evolution to be characteristicof AFC. The volume flux of the assimilant from the crust tothe magma chamber is suggested to have decreased progressivelywith time (proportional to t–1/2), and was about 3 x 10–2m/year at t = 10 years and 1 x 10–2 m/year at t = 100years. It has been commonly considered that the heat balancebetween magmas and the surrounding crust controls the couplingof assimilation and fractional crystallization processes (i.e.absolute value of r). However, it is inferred from this studythat the ratio of assimilated mass to crystallized mass canbe controlled by the transport process of the assimilant fromthe crust to magma chambers. KEY WORDS: assimilation and fractional crystallization; mass balance model; magma chamber; melt transport; Pb isotope  相似文献   
2.
3.
Major-element composition, mineral composition and grain-size distribution have been studied for Quaternary aeolian sediments from the Taklimakan Desert, north-western China, together with the variation of chemical and mineralogical compositions of different grain-size fractions. Aeolian sediments from the Taklimakan Desert have higher ratios of feldspar/quartz and calcite/quartz, finer grain size, poorer roundness of quartz and feldspar grains and lower abundances of frosted quartz, than found in aeolian sediments from other deserts such as the Saudi Arabian Desert. In spite of these immature mineralogical and sedimentological features, the aeolian sediments from the Taklimakan Desert show low regional variations in major-element and mineral compositions and are homogenized. These observations confirm that two processes, glacial activity within surrounding mountains and aeolian activity at the Tarim Basin, are important in the homogenization of the Taklimakan Desert sands. Taklimakan Desert sediments are constantly and effectively supplied from basement rocks in the surrounding mountains by glacial erosion. The supplied sediments are further homogenized by aeolian activity in the desert and are partly blown away, serving as the source of Chinese aeolian loess. Compositional differences are observed between loess (mainly 10–40 μm particles) and the <45 μm fraction of the Taklimakan Desert sediments, as well as between loess and whole rock of the Taklimakan Desert sediments. These observations provide constraints for precise modelling of loess formation, and for assessment of the chemical composition of the upper continental crust based on the chemical composition of aeolian loess.  相似文献   
4.
As a part of the study on soil carbon flow in a deglaciated area in Ny-Ålesund, Svalbard (79°N), we estimated the contribution of the belowground respiration of vascular plants to total soil respiration in August 1996. Four study sites were set up along a primary successional series, ranging from newly deglaciated moraine to older moraine with well-developed vegetation cover. Respiratory activity of the belowground parts (roots + belowground stems) of three dominant species. Salix polaris, Saxifraga oppositifolia and Luzula confusa , was determined under laboratory conditions. The respiratory activity and the Q10 value of the respiration were higher in S. polaris than in the other two species. Total soil respiration rates measured in the field varied widely. The areas with dense vegetation cover tended to show high respiration rates. Belowground respiration of vascular plants was estimated based on the respiratory activity and biomass of the belowground parts at each study site. The contribution to the belowground respiration to total soil respiration was negligible in the early stages of succession. On the other hand, the respiration of the belowground parts contributed to a significant proportion (∼29%) of the total soil respiration in the latter stages of succession.  相似文献   
5.
6.
Abstract— Mineralogical information recovered from the howardite, eucrite, diogenite (HED) meteorites was employed to reconstruct the history of the parent body and relate it to 4 Vesta. These interpreted crustal evolution processes were then compared to the expected geological features on the surface of a likely proto-planet, 4 Vesta. The original crustal materials of the HED parent body were preserved as mineral grains and lithic clasts, but in many eucrites, Fe/Mg ratios in pyroxenes were homogenized by diffusion after crystallization. The crystallization trend of the protocrust has been deciphered by (1) examining monomict and crystalline samples and using their mineralogical and chemical information to formulate a sequence of crystallization and cooling trends; and by (2) reconstructing the original crust prior to cratering events from lithic clasts and mineral fragments in polymict breccias such as howardites and polymict eucrites. Mineral components are identical, both in the individual HED and in polymict breccias, and no remnants of primitive materials were preserved in the polymict breccias. A layered crust model reconstructed from such breccias consists of an upper crust with extrusive lava-like eucrites that have been brecciated and metamorphosed, diogenite mantle, and cumulate eucrites of varying thickness between them. This model can be used to explain the surface geological features of Vesta observed from the Hubble space telescope. A large crater with diogenitic orthopyroxene at the crater floor is consistent with the deepest diogenitic layer of the layered crust model; and an underlying olivine layer is expected from early crystallized olivine in the crystal fractionation model. The old terrain of eucritic surface materials of Vesta can be howardites, polymict eucrites, or regolith-like eucrites produced from eucrites extruded and impacted on the surface. Partial melting models of eucrites seem to be favored by the rare-earth element (REE) chemistry and experimental studies. Unfortunately, partial melting models have not demonstrated how the HED parent body is converted to a layered crust without producing any metamorphosed primitive material in the layered crust. The origin of cumulate eucrites with systematic variation of textures and chemistries of pyroxene can be explained by the layered crust model with excavation and mixing of trapped liquid. Discovery of basaltic materials with Na-rich plagioclase and augite in iron meteorites, which are the products of partial melting, suggests that eucrites may be unique to a body that underwent large-scale differentiation and metamorphism.  相似文献   
7.
The results of a calcareous nannofossil biostratigraphic investigation of the North Fork Cottonwood Creek section of the Budden Canyon Formation (BCF; Hauterivian–Turonian) in northern California are summarized using the Boreal – cosmopolitan Boreal Nannofossil Biostratigraphy (BC) – Upper Cretaceous Nannofossil Biostratigraphy (UC) nannofossil zonal schemes of Bown et al. and Burnett et al. Sixteen intervals, ranging from the BC15 to UC8 zones, were established in the section. Combined biostratigraphic and magnetostratigraphic studies suggest a Hauterivian to mid‐Turonian age for the studied sequence. The Hauterivian–Barremian, Barremian–Aptian, Aptian–Albian, Albian–Cenomanian, and Cenomanian–Turonian stage boundaries were delineated near the top of the Ogo Member, below the Huling Sandstone Member, within the upper Chickabally Member, in the upper portion of the Bald Hills Member and within the Gas Point Member, respectively. Unconformities probably exist at the base of the Huling Sandstone Member and the upper part of the upper Chickabally Member. The nannofossil assemblage in the North Fork Cottonwood Creek suggests that the study area was under the influence of cold‐water conditions during the Barremian to Lower Aptian interval, shifting to tropical/warm‐water conditions during the Albian to Turonian interval as a result of the mid‐Cretaceous global warming. Although oceanic anoxic events have not yet been reported in the BCF, preliminary total organic carbon, along with nannofossil data, suggest the presence of the global Cenomanian–Turonian boundary oceanic anoxic event 2.  相似文献   
8.
9.
Abstract

Sediment is transported in the form of debris flows in major gullies dissecting permeable volcanic slopes as exemplified by the Kami-kamihori Valley in the northern Japan Alps. Four years of hydrological observations in the headwater area of the gully showed that the surface runoff which triggers debris flows is related to peak 10- to 20-minute rainfall. Sediment production in such a short time is not sufficient to prepare a debris flow. Therefore, debris must have been accumulated at a particular section by repeated sediment discharge due to minor rainstorms. The volume of the debris produced in the headwaters was evaluated and correlated to an effective rainfall. The quantity of sediment transport at seven sections along the gully by debris flows in three periods was evaluated through the measurement of the topographic changes. It was compared with the total effective rainfall for the pertinent period, and the mean “sediment concentration” in the debris flow was calculated for each section and for each period. It was shown that the change in the sediment concentration along the gully reflects the entrainment of debris from the gully floor in the acceleration zone and the deposition in the deceleration zone. It was also demonstrated that the sediment delivery of a debris flow depends on the time distribution of rainfall, because rainfall time bases appropriate to prediction of the sediment transport at different reaches vary.  相似文献   
10.
The erodibility of a grain on a rough bed is controlled by, among other factors, its relative projection above the mean bed, its exposure relative to upstream grains, and its friction angle. Here we report direct measurements of friction angles, grain projection and exposure, and small-scale topographic structure on a variety of water-worked mixed-grain sediment surfaces. Using a simple analytical model of the force balance on individual grains, we calculate the distribution of critical shear stress for idealized spherical grains on the measured bed topography. The friction angle, projection, and exposure of single grain sizes vary widely from point to point within a given bed surface; the variability within a single surface often exceeds the difference between the mean values of disparate surfaces. As a result, the critical shear stress for a given grain size on a sediment surface is characterized by a probability distribution, rather than a single value. On a given bed, the crtitical shear stress distributions of different grain sizes have similar lower bounds, but above their lower tails they diverge rapidly, with smaller grains having substantially higher median critical shear stresses. Large numbers of fines, trapp.ed within pockets on the bed or shielded by upstream grains, are effectively lost to the flow. Our calculations suggest that critical shear stress, as conventionally measured, is defined by the most erodible grains, entrained during transient shear stress excursions associated with the turbulent flow; this implies a physical basis for the indeterminacy of initial motion. These observations suggest that transport rate/shear stress relationships may be controlled, in part, by the increasing numbers of grains that become available for entrainment as mean shear stress increases. They also suggest that bed textures and grain size distributions may be controlled, within the constraints of an imposed shear stress and sediment supply regime, by the influence of each size fraction on the erodibility of other grain sizes present on the bed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号