首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1743篇
  免费   98篇
  国内免费   19篇
测绘学   31篇
大气科学   140篇
地球物理   508篇
地质学   537篇
海洋学   158篇
天文学   335篇
综合类   1篇
自然地理   150篇
  2021年   27篇
  2020年   25篇
  2019年   28篇
  2018年   54篇
  2017年   46篇
  2016年   71篇
  2015年   40篇
  2014年   50篇
  2013年   102篇
  2012年   76篇
  2011年   105篇
  2010年   74篇
  2009年   111篇
  2008年   101篇
  2007年   83篇
  2006年   80篇
  2005年   79篇
  2004年   60篇
  2003年   54篇
  2002年   61篇
  2001年   37篇
  2000年   34篇
  1999年   38篇
  1998年   32篇
  1997年   18篇
  1996年   28篇
  1995年   25篇
  1994年   22篇
  1993年   18篇
  1992年   24篇
  1991年   13篇
  1990年   17篇
  1989年   9篇
  1988年   10篇
  1987年   8篇
  1986年   8篇
  1985年   16篇
  1984年   17篇
  1983年   19篇
  1982年   14篇
  1981年   15篇
  1980年   7篇
  1979年   14篇
  1978年   16篇
  1977年   13篇
  1976年   6篇
  1975年   7篇
  1974年   8篇
  1973年   10篇
  1967年   5篇
排序方式: 共有1860条查询结果,搜索用时 15 毫秒
1.
The giant impact hypothesis is the dominant theory explaining the formation of our Moon. However, the inability to produce an isotopically similar Earth–Moon system with correct angular momentum has cast a shadow on its validity. Computer-generated impacts have been successful in producing virtual systems that possess many of the observed physical properties. However, addressing the isotopic similarities between the Earth and Moon coupled with correct angular momentum has proven to be challenging. Equilibration and evection resonance have been proposed as means of reconciling the models. In the summer of 2013, the Royal Society called a meeting solely to discuss the formation of the Moon. In this meeting, evection resonance and equilibration were both questioned as viable means of removing the deficiencies from giant impact models. The main concerns were that models were multi-staged and too complex. We present here initial impact conditions that produce an isotopically similar Earth–Moon system with correct angular momentum. This is done in a single-staged simulation. The initial parameters are straightforward and the results evolve solely from the impact. This was accomplished by colliding two roughly half-Earth-sized impactors, rotating in approximately the same plane in a high-energy, off-centered impact, where both impactors spin into the collision.  相似文献   
2.
A FORTRAN program, consistent with the commercially available finite element (FE) code ABAQUS, is developed based on a three-dimensional (3D) linear elastic brittle damage constitutive model with two damage criteria. To consider the heterogeneity of rock, the developed FORTRAN program is used to set the stiffness and strength properties of each element of the FE model following a Weibull distribution function. The reliability of the program is assessed against available experimental results for granite cylindrical specimens with a throughgoing, flat and inclined fissure. The calibration procedure of the material parameters is explained in detail, and it is shown that the compressive to tensile strength ratio can have a substantial influence on the failure response of the specimens. Numerical simulations are conducted for models with different levels of heterogeneity. The results show a smaller load bearing capacity for models with less homogeneity, representing gradual coalescence of fully damaged elements forming throughout the models during loading. The maximum load bearing capacity is studied for various combinations of inclination angles of two centrally aligned, throughgoing and flat fissures of equal length embedded in cylindrical models under uniaxial and multiaxial loading conditions. The key role of the compressive to tensile strength ratio is highlighted by repeating certain simulations with a lower compressive to tensile strength ratio. It is proven that the peak loads of the rock models with sufficiently small compressive to tensile strength ratios containing two throughgoing fissures of equal length are similar, provided that the minimum inclination angles of the models are the same. The results are presented and discussed with respect to the existing experimental findings in the literature, suggesting that the numerical model applied in this study can provide useful insight into the failure behaviour of rock-like materials.  相似文献   
3.
This paper presents a detailed numerical study of the retrogressive failure of landslides in sensitive clays. The dynamic modelling of the landslides is carried out using a novel continuum approach, the particle finite element method, complemented with an elastoviscoplastic constitutive model. The multiwedge failure mode in the collapse is captured successfully, and the multiple retrogressive failures that have been widely observed in landslides in sensitive clays are reproduced with the failure mechanism, the kinematics, and the deposition being discussed in detail. Special attention has been paid to the role of the clay sensitivity on each retrogressive failure as well as on the final retrogression distance and the final run‐out distance via parametric studies. Moreover, the effects of the viscosity of sensitive clays on the failure are also investigated for different clay sensitivities.  相似文献   
4.
5.
The development of coal forests during the Carboniferous is one of the best-known episodes in the history of life. Although often reconstructed as steamy tropical rainforests, these ancient ecosystems were a far cry from anything we might encounter in the Amazon today. Bizarre giant club-mosses, horsetails and tree ferns were the dominant plants, not flowering trees as in modern rainforests. At their height, coal forests stretched all the way from Kansas to Kazakhstan, spanning the entire breadth of tropical Pangaea. Most of what we know of their biodiversity and ecology has been quite literally mined out of the ground through two centuries of hard labour. Without coal mining, our knowledge would be greatly impoverished. Over the past few years, we've been exploring underground coal mines in the United States, where entire forested landscapes have been preserved intact over huge areas. Never before have geologists had the opportunity to walk out through mile upon mile of fossilized forest. In this feature article, we describe some of our recent explorations and attempt to shed new light on these old fossils.  相似文献   
6.
The finite‐element formulation and integration algorithms developed in Part I are used to analyse a number of practical problems involving unsaturated and saturated soils. The formulation and algorithms perform well for all the cases analysed, with the robustness of the latter being largely insensitive to user‐defined parameters such as the number of coarse time steps and error control tolerances. The efficiency of the algorithms, as measured by the CPU time consumed, does not depend on the number of coarse time steps, but may be influenced by the error control tolerances. Based on the analyses presented here, typical values for the error control tolerances are suggested. It is also shown that the constitutive modelling framework presented in Part I can, by adjusting one constitutive equation and one or two material parameters, be used to simulate soils that expand or collapse upon wetting. Treating the suction as a strain variable instead of a stress variable proves to be an efficient and robust way of solving suction‐dependent plastic yielding. Moreover, the concept of the constitutive stress is a particularly convenient way of handling the transition between saturation and unsaturation. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   
7.
Observations of the interstellar medium reveal a dynamic realm permeated by shocks. These shocks are generated on a large range of scales by galactic rotation, supernovae, stellar winds, and other processes. Whenever a shock encounters a density interface, Richtmyer-Meshkov instabilities may develop. Perturbations along the interface grow, leading to structure formation and material mixing. An understanding of the evolution of Richtmyer-Meshkov instabilities is essential for understanding galactic structure, molecular cloud morphology, and the early stages of star formation. An ongoing experimental campaign studies Richtmyer-Meshkov mixing in a convergent, compressible, miscible plasma at the Omega laser facility. Cylindrical targets, consisting of a low density foam core and an aluminum shell covered by an epoxy ablator, are directly driven by fifty laser beams. The aluminum shell is machined to produce different perturbation spectra. Surface types include unperturbed (smooth), single-mode sinusoids, multi-mode (rough), and multi-mode with particular modes accentuated (specified-rough). Experimental results are compared to theory and numerical simulations.  相似文献   
8.
This paper compares lead-acid batteries, sodium-sulfur batteries, solid polymer fuel cells and closed-cycle diesel engines for autonomous underwater vehicle (AUV) applications. The service is described in terms of a parametric mission and life cycle. A generic AUV is used as a basis for comparison. Power systems are evaluated by two criteria: (1) submerged endurance capability and (2) life cycle cost. This study determines categories of service for which each power system is preferred. The solid polymer fuel cell can provide greater submerged endurance than other power systems examined. For extremely long duration AUV missions, the fuel cell is the required system, indicating a possible market niche for today's fuel cell technology. Considering cost projections for each power system, the results also show that the SPFC can become cost-competitive with conventional technologies, particularly for services characterized by high levels of utilization  相似文献   
9.
10.
The accuracy of the computed stress distribution near the free surface of vertical slopes was evaluated in this study as a function of the element size, including aspect ratio. To accomplish this objective, a parametric study was carried out comparing stresses computed using the finite element method (FEM) to those obtained from a physical model composed of photoelastic material. The results of the study indicate a reasonable agreement between a gelatin model and the FEM model for shear stresses, and an overall good agreement between the two models for the principal stresses. For stresses along the top of the slope, the height of the element tends to be more important than width or aspect ratio, at least for aspect ratios up to 4. In all cases, the greatest difference between the two models occurs in the vicinity of the slope. Specifically, if H is defined as the slope height, an element height of H/10 appears to be adequate for the study of stresses deep within the slope, such as for typical embankment analyses. However, for cases where tensile stresses in the vicinity of the slope face which are critical, such as for the stability analysis of steep slopes, element heights as small as H/32, or higher‐order elements, are necessary. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号