首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   1篇
  国内免费   4篇
大气科学   5篇
地球物理   1篇
地质学   2篇
  2022年   1篇
  2021年   3篇
  2019年   1篇
  2014年   1篇
  2009年   1篇
  1997年   1篇
排序方式: 共有8条查询结果,搜索用时 31 毫秒
1
1.
Normal alkanes and PAHs in atmospheric PM10 aerosols collected during 2008 winter and spring in Baoji, a mid-scale inland city of China, were determined on a molecular level. Concentrations of n-alkanes ranged from 232 to 3583 ng/m3 with an average of 1733 ng/m3 in winter and from 124 to 1160 ng/m3 with an average of 449 ng/m3 in spring, while PAHs in the PM10 samples were 594 ± 405 and 128 ± 82 ng/m3 in the two seasons. Molecular compositions showed that CPI (odd/even) values of n-alkanes were close to unity for all the samples especially in winter, and diagnostic ratios of PAHs (e.g., Phe/(Phe + Ant), CPAH/ΣPAHs and IcdP/(IcdP + BghiP)) were found similar to those in coal burning smoke with a strong linear relationship (R2 ≥ 0.85) between PAHs and fossil fuel derived n-alkanes, demonstrating that coal burning is the main source of n-alkanes and PAHs in the city, especially in winter due to house heating. Concentrations of the determined compounds in Baoji are much higher than those in Chinese mega-cities, suggesting that air pollution in small cities in the country is more serious and need more attention.  相似文献   
2.
春季中国东部气溶胶化学组成及其分布的模拟研究   总被引:2,自引:0,他引:2  
本文利用区域空气质量模式RAQMS(Regional Air Quality Model System),对2009年春季中国东部气溶胶主要化学成分及其分布进行了模拟研究。与泰山站观测资料的对比结果显示,模式能比较合理地反映气溶胶浓度的逐日变化特征。整体上,模式对无机盐气溶胶的模拟好,分别高估和低估黑碳和有机碳气溶胶浓度,其原因与排放源、二次有机气溶胶化学机制和模式分辨率的不确定性有关。模拟结果显示,春季气溶胶浓度高值主要集中于华北、四川东部、长江中下游等地区。受东南亚生物质燃烧和大气输送的影响,中国的云南和广西等地区有机碳浓度高于中国其他地区。中国西北部沙尘浓度较高,而且向东输送并影响到中国东部和南方部分地区。中国东部的华北、四川东部、长江中下游等地PM2.5(空气动力学直径在2.5微米以下的颗粒物)污染严重,4月平均PM2.5浓度超过了我国日平均PM2.5浓度限值。中国东部泰山站的观测和模拟结果都显示近地面硝酸盐浓度超过硫酸盐,中国北部对流层中硝酸盐的柱含量也大于硫酸盐,而在中国南部则相反,这一方面与春季中国云量 南多北少的分布特征以及云内液相化学反应有关,另一方面也与南北温差对气溶胶形成的影响有关。就整个中国东部而言,虽然硫酸盐的柱含量(46 Gg)仍大于硝酸盐(42 Gg),但比较接近,反映出我国氮氧化物排放迅速增加的趋势。春季中国地区对流层中PM10(空气动力学直径在10微米以下的颗粒物)及其化学成分柱含量分别为:990.8 Gg(PM10),52.6 Gg(硫酸盐),48.2 Gg(硝酸盐),32.1 Gg(铵盐),22.9 Gg(黑碳)和74.1 Gg(有机碳),有机碳(OC)中一次有机碳(POC)和二次有机碳(SOC)分别占60%和40%,中国东部PM10中人为气溶胶和沙尘分别占30%和70%,反映了春季沙尘对我国大气气溶胶的重要贡献。  相似文献   
3.
Wang  Yuesi  Li  Wenjie  Gao  Wenkang  Liu  Zirui  Tian  Shili  Shen  Rongrong  Ji  Dongsheng  Wang  Shuai  Wang  Lili  Tang  Guiqian  Song  Tao  Cheng  Mengtian  Wang  Gehui  Gong  Zhengyu  Hao  Jiming  Zhang  Yuanhang 《中国科学:地球科学(英文版)》2019,62(12):1857-1871
Accurate determination of the atmospheric particulate matter mass concentration and chemical composition is helpful in exploring the causes and sources of atmospheric enthalpy pollution and in evaluating the rationality of environmental air quality control strategies.Based on the sampling and chemical composition data of PM_(2.5) in different key regions of China in the CARE-China observation network,this research analyzes the environmental air quality data released by the China National Environmental Monitoring Centre during the studied period to determine the changes in the particulate matter mass concentration in key regions and the evolution of the corresponding chemical compositions during the implementation of the Action Plan for Prevention and Control of Air Pollution from 2013-2017.The results show the following.(1) The particulate matter mass concentration in China showed a significant downward trend;however,the PM_(2.5) annual mass concentration in 64% of cities exceeds the New Chinese Ambient Air Quality Standard(CAAQS) Grade Ⅱ(GB3095-2012).The region to the east of the Taihang Mountains,the Fenhe and Weihe River Plain and the Urumqi-Changji regions in Xinjiang,all have PM_(2.5) concentration loading that is still high,and heavy haze pollution occurred frequently in the autumn and winter.(2) During the heavy pollution in the autumn and winter,the concentrations of sulfate and organic components decreased significantly.The mean SO_4~(2-) concentration in PM_(2.5) decreased by 76%,12%,81% and 38% in Beijing-Tianjin-Hebei(BTH),the Pearl River Delta(PRD),the Sichuan-Chongqing region(SC) and the Fenhe and Weihe River Plain,respectively.The mean organic matter(OM) concentration decreased by 70%,44%,48% and 31%,respectively,and the mean concentration of NH_4~+ decreased by 68%,1.6%,38% and 25%,respectively.The mean elemental carbon(EC) concentration decreased by 84% and 20% in BTH and SC,respectively,and it increased by 61% and 11% in the PRD and Fenhe and Weihe River Plain,respectively.The mean concentration of mineral and unresolved chemical components(MI) dropped by 70%,24% and 13% in BTH,the PRD and the Fenhe and Weihe River Plain,respectively.The change in the PM_(2.5) chemical composition is consistent with the decrease of the PM_(2.5)mass concentration.(3) In 2015,the mean OM concentration contributions to fine particles and coarse particles were 13-46%and 46-57%,respectively,and the mean MI concentration contributions to fine particles and coarse and particles were 31-60%and 39-73%,respectively;these values are lower than the 2013 values from the key regions,which is the most important factor behind the decrease of the particulate matter mass concentration.From 2013 to 2015,among the chemical components of different particle size fractions,the peak value of the coarse particle size fraction decreased significantly,and the fine particle size fractions of SO_4~(2-),NO_3~-,and NH_4~+ decreased with the decrease of the particulate matter mass concentration in different particle size fractions.The fine-particle size peaks of SO_4~(2-),NO_3~-and NH_4~+ shifted from 0.65-1.1μm to the finer size range of0.43-0.65 μm during the same time frame.  相似文献   
4.
As the key precursors of O_3, anthropogenic non-methane volatile organic compounds(NMVOCs) have been studied intensively. This paper performed a meta-analysis on the spatial and temporal variations of NMVOCs, their roles in photochemical reactions, and their sources in China, based on published research. The results showed that both nonmethane hydrocarbons(NMHCs) and oxygenated VOCs(OVOCs) in China have higher mixing ratios in the eastern developed cities compared to those in the central and western areas. Alkanes are the most abundant NMHCs species in all reported sites while formaldehyde is the most abundant among the OVOCs. OVOCs have the highest mixing ratios in summer and the lowest in winter, which is opposite to NMHCs. Among all NMVOCs, the top eight species account for 50%-70% of the total ozone formation potential(OFP) with different compositions and contributions in different areas. In devolved regions, OFP-NMHCs are the highest in winter while OFP-OVOCs are the highest in summer. Based on positive matrix factorization(PMF) analysis, vehicle exhaust, industrial emissions, and solvent usage in China are the main sources for NMHCs. However, the emission trend analysis showed that solvent usage and industrial emissions will exceed vehicle exhaust and become the two major sources of NMVOCs in near future. Based on the meta-analysis conducted in this work,we believe that the spatio-temporal variations and oxidation mechanisms of atmospheric OVOCs, as well as generating a higher spatial resolution of emission inventories of NMVOCs represent an area for future studies on NMVOCs in China.  相似文献   
5.
A better knowledge of aerosol properties is of great significance for elucidating the complex mechanisms behind frequently occurring haze pollution events. In this study, we examine the temporal and spatial variations in both PM_1 and its major chemical constituents using three-year field measurements that were collected in six representative regions in China between 2012 and 2014. Our results show that both PM_1 and its chemical compositions varied significantly in space and time, with high PM_1 loadings mainly observed in the winter. By comparing chemical constituents between clean and polluted episodes, we find that the elevated PM_1 mass concentration during pollution events should be largely attributable to significant increases in organic matter(OM) and inorganic aerosols like sulfate, nitrate, and ammonium(SNA),indicative of the critical role of primary emissions and secondary aerosols in elevating PM_1 pollution levels. The ratios of PM_1/PM_(2.5) are found to be generally high in Shanghai and Guangzhou, while relatively low ratios are seen in Xi'an and Chengdu, indicating anthropogenic emissions were more likely to accumulate in forms of finer particles. With respect to the relative importance of chemical components and meteorological factors quantified via statistical modeling practices, we find that primary emissions and secondary aerosols were the two leading factors contributing to PM_1 variations, though meteorological factors also played important roles in regulating the dispersion of atmospheric PM.  相似文献   
6.
中国侵入岩中改造成因金矿床基本特征及成矿机制   总被引:5,自引:1,他引:5  
侵入岩中的金矿床多为改造作用形成。赋矿侵入体岩性多样,从超镁铁-镁铁到中性-酸性-碱性成分均有发现。岩体发育在克拉通、克拉通边缘活化带及褶皱带中,其时代从太古宙到燕山期都有发现。其中超镁铁岩-镁铁岩-闪长岩-碱性岩-斜长岩为上地幔或上地幔-下地壳的重熔或混染的产物,中-酸性岩为地壳深部含金火山沉积岩系重熔形成。金矿床有细脉浸染、石英脉、细脉浸染+石英脉等类型。在大岩体中矿床发育在内接触带的断裂系中  相似文献   
7.
Amines are important for new particle formation and subsequent growth in the atmosphere. Consequently, the processes involved are receiving more attention in recent years. Here, we conduct a field observation in order to investigate the atmospheric particulate amines at a background site in the Yangtze River Delta(YRD) during the summer of 2018.Four amines in PM_(2.5), i.e., methylamine(MA), dimethylamine(DMA), diethylamine(DEA), and trimethylamine(TMA),were collected, twice daily and analyzed. During the campaign, our measurements found the concentrations of MA, DMA,DEA, and TMA of 15.0 ± 15.0, 6.3 ± 6.9, 20.4 ± 30.1, and 4.0 ± 5.9 ng m–3, respectively, and the four amines correlated well with each other. The concentration of amines appear to be independent of whether they were collected during the day or night. Both MA and DMA exhibited a bimodal size distribution that had peaks at 0.67 and 1.1 μm, suggesting amines preferably distribute on submicron particles. Boundary layer height(BLH), relative humidity, and pH of aerosols were found have a negative relationship with amines, while aerosol liquid water content(ALWC) was found to have a positive relationship with amines. The PMF(positive matrix factorization) source apportionment results showed that the main source of amines in Chongming Island was of anthropogenic origin such as industrial and biomass emission, followed by marine sources including sea salt and marine biogenic sources. Given that the YRD region is still suffering from complex atmospheric pollution and that the knowledge on aerosol amines is still limited, more field studies are in urgent need for a better understanding of the pollution characteristics of amines.  相似文献   
8.
在四川拉拉铜矿田海林铜矿区的勘查工作中,采用被动源地震方法进行勘查应用试验,将获得的成果与AMT(音频大地电磁)成果进行对比,发现吻合程度较高,并且在深部的分辨率要优于AMT。通过试验证明被动源地震方法可以有效识别出层控型矿床的含矿地层和围岩,为丰富矿产勘查的物探手段提供了有益的应用实例。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号