首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   18篇
  免费   1篇
测绘学   1篇
大气科学   1篇
地球物理   7篇
地质学   7篇
海洋学   2篇
自然地理   1篇
  2021年   2篇
  2018年   2篇
  2017年   2篇
  2013年   1篇
  2012年   1篇
  2011年   1篇
  2010年   3篇
  2009年   1篇
  2008年   1篇
  2007年   1篇
  2006年   1篇
  2002年   1篇
  1998年   2篇
排序方式: 共有19条查询结果,搜索用时 46 毫秒
1.
Soils in mountainous areas are often polygenetic, developed in slope covers that relate to glacial and periglacial activities of the Pleistocene and Holocene and reflect climatic variations. Landscape development during the Holocene may have been influenced by erosion/solifluction that often started after the Holocene climatic optimum. To trace back soil evolution and its timing, we applied a multi‐methodological approach. This approach helped us to outline scenario of soil transformation. According to our results, some aeolian input must have occurred in the late Pleistocene. During that time and the early Holocene, the soils most likely had features of Cryosols or Leptosols. Physico‐chemical and mineralogical analyses have indicated that the material was denudated (between late Boreal to the Atlantic) from the ridge and upper‐slope positions forming a colluvium at mid‐slope positions. Later, during the Sub‐Boreal, mass wasting of the remains of silt material deposited at the end of the Pleistocene age on the ridge top seems to have occurred. In addition, the cool and moist conditions caused the deposition of a colluvium at the lower‐slope positions. The next phase was characterized by the transformation of Leptosols/Cambisols into Podzols at upper‐slope or shoulder positions and to Albic Cambisols at mid‐slope positions. During the Sub‐Boreal period, Stagnosols started to form at the lower part of the slope catena. Overall, the highest erosion rates were calculated at the upper‐slope position and the lowest rates at mid‐slope sites. Berylium‐10 (10Be) data showed that the Bs, BC/C were covered during the Holocene by a colluvium with a different geological composition which complicated the calculation of erosion or accumulation rates. The interpretation of erosion and accumulation rates in such multi‐layered materials may, therefore, be hampered. However, the multi‐methodological reconstruction we applied shed light on the soil and landscape evolution of the eastern Karkonosze Mountains. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   
2.
The diffusive component of the particulate organic carbon (POC) export from the ocean's surface layer has been estimated using a combination of the mixed layer model and SeaWiFS ocean color data. The calculations were carried out for several example sites located in the North Atlantic over a 10-year time period (1998–2007). Satellite estimates of surface POC derived from ocean color were applied as an input to the model driven by local surface heat and momentum fluxes. For each year of the examined period, the diffusive POC flux was estimated at a 200 m depth. The highest flux is generally observed in the spring and fall seasons, when surface waters are weakly stratified. In addition, the model results demonstrate significant interannual and geographical variability of the flux. The highest diffusive POC flux occurs in the northern North Atlantic and the lowest in the subtropical region. The interannual variability of the diffusive POC flux is associated with mixed layer dynamics and underscores the importance of atmospheric forcing for POC export from the surface layer to the ocean's interior.  相似文献   
3.
4.
We consider computational modeling of flow with small and large velocities at porescale and at corescale, and we address various challenges in simulation, upscaling, and modeling. While our focus is on voxel-based data sets from real porous media imaging, our methodology is verified first on synthetic geometries, and we analyze various scaling and convergence properties. We show that the choice of a voxel-based grid and representative elementary volume size can lead up to 10–20 % difference in calculated conductivities. On the other hand, the conductivities decrease significantly with flow rates, starting in a regime usually associated with the onset of inertia effects. This is accompanied by deteriorating porescale solver performance, and we continue our experiments up until about 50 % reduction in conductivities, i.e., to Reynolds number just under 1. To account for this decrease, we propose a practical power-based fully anisotropic non-Darcy model at corescale for which we calculate the parameters by upscaling.  相似文献   
5.
ET0模型在不同地区具有不同的适用性,而对极端干旱的塔克拉玛干沙漠南缘绿洲的ET0模型的适用性研究较为稀缺。利用2006—2014年生长季(4—10月)策勒气象站逐日气象资料,以自动称重式蒸渗仪实测数据为标准,采用最大绝对误差(MAE)、均方根误差(RMSE)、模型效率(EF)和一致性指数(d)4个指标,在日、月时间尺度上评价了6种常用ET0模型在策勒绿洲的适用性,并使用回归修正法和比例修正法分别修正了这6种模型。结果表明:(1)日、月时间尺度上,Hargreaves-Samani(H-S)模型高估程度较大,其余模型均不同程度低估,拟合度由高到低依次为FAO-56PM、Jensen-Haise(J-H)、Priestley-Taylor(P-T)、Makkink、Turc、H-S。(2)所有ET0模型月值变化趋势与蒸渗仪实测值基本一致,除FAO-56PM和Turc模型计算的ET0月值在6月达到峰值外,其余模型均在7月达到峰值,在生长季尺度所有模型ET0月值与蒸渗仪实测值呈显著相关。(3)日、月时间尺度上,回归修正法和比例修正法修正后的ET0模型计算结果与蒸渗仪实测值均呈极显著相关,回归修正法优于比例修正法。(4)相关性分析表明,对策勒绿洲ET0影响由高到低的气象因子依次为Tmean>Tmin>P>Tmax>Rs>U2>RHmean。  相似文献   
6.
Temporal mass variations in the Earth system, which can be detected from the Gravity Recovery and Climate Experiment (GRACE) mission data, cause temporal variations of geoid heights. The main objective of this contribution is to analyze temporal variations of geoid heights over the area of Poland using global geopotential models (GGMs) developed on the basis of GRACE mission data. Time series of geoid height variations were calculated for the chosen subareas of the aforementioned area using those GGMs. Thereafter, these variations were analyzed using two different methods. On the basis of the analysis results, models of temporal geoid height variations were developed and discussed. The possibility of prediction of geoid height variations using GRACE mission data over the area of Poland was also investigated. The main findings reveal that the geoid height over the area of Poland vary within 1.1 cm which should be considered when defining the geoid model of 1 cm accuracy for this area.  相似文献   
7.
8.
9.
A conceptual framework for climate change assessments of international market systems that involve long-term investments is proposed. The framework is a hybrid of dynamic and static modeling. Dynamic modeling is used for those system components for which temporally continuous modeling is possible, while fixed time slices are used for other system components where it can be assumed that underlying assumptions are held constant within the time slices but allowed to vary between slices. An important component of the framework is the assessment of the “metauncertainty” arising from the structural uncertainties of a linked sequence of climate, production, trade and decision-making models. The impetus for proposing the framework is the paucity of industry-wide assessments for market systems with multiple production regions and long-term capital investments that are vulnerable to climate variations and change, especially climate extremes. The proposed framework is pragmatic, eschewing the ideal for the tractable. Even so, numerous implementation challenges are expected, which are illustrated using an example industry. The conceptual framework is offered as a starting point for further discussions of strategies and approaches for climate change impact, vulnerability and adaptation assessments for international market systems.  相似文献   
10.
Satellite remote sensing offers new means of quantifying particulate organic carbon, POC, concentration over large oceanic areas. From SeaWiFS ocean color, we derived 10-year data of POC concentration in the surface waters of the global ocean. The 10-year time series of the global and basin scale average surface POC concentration do not display any significant long-term trends. The annual mean surface POC concentration and its seasonal amplitude are highest in the North Atlantic and lowest in the South Pacific, when compared to other ocean basins. POC anomalies in the North Atlantic, North Pacific, and global concentrations seem to be inversely correlated with El Niño index, but longer time series are needed to confirm this relationship. Quantitative estimates of POC reservoir in the oceanic surface layer depend on the choice of what should represent this layer. Global average POC biomass is 1.34 g m?2 if integrated over one optical depth, 3.62 g m?2 if integrated over mixed layer depth, and up to 6.41 g m?2 if integrated over 200-m layer depth (when assumed POC concentration below MLD is 20 mg m?3). The global estimate of total POC reservoir in the surface 200-m layer of the ocean is 228.61×1013 g. We expect that future estimates of POC reservoir may be even larger, when more precise calculations account for deep-water organic-matter maxima in oligotrophic regions, and POC biomass located just below the seasonal mixed layer in spring and summer in the temperate regions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号