首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
地球物理   1篇
地质学   1篇
海洋学   1篇
  2022年   1篇
  2021年   1篇
  2018年   1篇
排序方式: 共有3条查询结果,搜索用时 15 毫秒
1
1.
Global phosphorus scarcity will result in significant consequences for future food security with the depletion of current phosphate reserves.Therefore,exploration of new phosphorus sources is essential to address future phosphorus scarcity.The current study investigated the geochemical potential of lake sediment around the Eppawala Phosphate Deposit(EPD)in Sri Lanka to be used as a low-grade phosphorus source for agricultural purposes.Jaya-Ganga is a man-made water canal that drains through the EPD feeding three lakes,namely,upstream Ihalahalmilla Lake and Koon Lake,and downstream Kiralogama Lake with respect to the EPD.Three cores(cores A,B,and C)were collected from the above three lakes and major oxides and minerals distributions along the cores were analyzed.Notable high enrichment of phosphorus pentoxide(P2O5)content and high P2O5 solubility values were measured in the top 60 cm sediment layer in Core B and throughout the Core C compared to the Core A.This high enrichment of P2O5 content in the same sediment columns were confirmed by the comparison with the Upper Continental Crust(UCC)values and literature survey.According to the X-ray Diffraction(XRD)results,phosphate minerals,such as fluorapatite,crandallite,and millisite were abundantly found in the same sediment columns.Therefore,these phosphate minerals can be considered as pathfinding minerals for soluble phosphates in sediment cores.Thus,sediment with high P2O5 content and high solubility in downstream Kiralogama Lake showed the potential for application of these sediments as a direct phosphate source in agricultural purposes.Furthermore,the current study has introduced a new area of interest,i.e.,soil and sediments around major phosphate deposits,for the exploration of new phosphate sources to meet future phosphorus demand.  相似文献   
2.
Beach sediments in Sri Lanka contain industrial-grade heavy mineral occurrences. Samples of both offshore and onshore sediments were collected to examine the provenance, mineralogy and geochemical compositions of the heavy mineral occurrences. Coastal morphodynamic changes along the coastline of Sri Lanka were analyzed using the time-series satellite images. These coastal morphodynamic changes were used to identify the prominent directions of monsoon-influenced longshore currents, coastal sediment accretion and depositional trends and their relationships to the provenance of the heavy minerals. Results show the concentrations of detrital ilmenite, zircon, garnet, monazite, and rutile vary in the onshore and offshore sediments. The heavy mineral potential of the northeastern coast is high (average contents of about 45–50% in the Verugal deposit, 70–85% in the Pulmoddai deposit, and 3.5–5.0% in offshore samples stretching from Nilaveli to Kokkilai), compared to sediments in southwest (average content about 10% in onshore sediments and 2% in offshore sediments from the mouth of the Gin River). Therefore, no economic-grade heavy mineral placers were identified in the offshore environments. The high concentrations of heavy minerals in beach sediments and low concentrations in offshore sediments suggest operation of a panning system in the surf zone to form enriched placer deposits. Major and trace element compositions of beach sediments show marked enrichments of TiO2, Fe2O3, La, Ce, Zr, Cr, Nb, Th and V compared to average Upper Continental Crust (UCC) values. Analysis of prominent coastal longshore transport patterns identifies bidirectional sediment transport in the northeast coast of Sri Lanka. In the southwestern coast, two transport directions occur with anti-clockwise transport from Galle to Hambantota, and clockwise transport from Hikkaduwa to Wadduwa. The heavy minerals in the placers were mainly derived from Precambrian metamorphic rocks, and transported to the coast through the river systems of Sri Lanka.  相似文献   
3.
Ocean Science Journal - Long-term field monitoring of shoreline changes is time-consuming, expensive, and labor-intensive. Instead, satellite images can be used as an alternative method to collect...  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号