首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   99篇
  免费   7篇
  国内免费   1篇
测绘学   1篇
大气科学   11篇
地球物理   19篇
地质学   38篇
海洋学   13篇
天文学   19篇
综合类   3篇
自然地理   3篇
  2019年   2篇
  2017年   5篇
  2016年   5篇
  2015年   4篇
  2014年   3篇
  2013年   5篇
  2012年   2篇
  2011年   5篇
  2010年   5篇
  2009年   4篇
  2008年   7篇
  2007年   6篇
  2006年   2篇
  2005年   2篇
  2004年   2篇
  2003年   9篇
  2002年   9篇
  2001年   4篇
  1999年   3篇
  1998年   2篇
  1997年   7篇
  1996年   2篇
  1995年   1篇
  1994年   4篇
  1993年   1篇
  1985年   1篇
  1984年   1篇
  1982年   1篇
  1981年   2篇
  1974年   1篇
排序方式: 共有107条查询结果,搜索用时 671 毫秒
1.
2.
 The yearly nutrient supply from land and atmosphere to the study area in SW Kattegat is 10 900 tons of N and 365 tons of P. This is only few percent of the supply from adjacent marine areas, as the yearly transport through the study area is 218 000 tons of N and 18 250 tons of P. Yearly net deposition makes up 1340 tons of N (on average 2.5 g m–2 yr–1) and 477 ton of P (on average 0.9 g m–2 yr–1). Shallow-water parts of the study area have no net deposition because of frequent (>35% of the year) resuspension. Resuspension frequency in deep water is <1% of the year. Resuspension rates, as averages for the study area, are 10–17 times higher than net deposition rates. Because of resuspension, shallow-water sediments are coarse lag deposits with small amounts of organic matter (1.1%) and nutrients (0.04% N and 0.02% P). Deep-water sediments, in contrast, are fine grained with high levels of organic matter (11.7%) and nutrients (0.43% N and 0.15% P). Laboratory studies showed that resuspension changes the diffusive sediment water fluxes of nutrients, oxygen consumption, and penetration into the sediment. Fluxes of dissolved reactive phosphate from sediment to water after resuspension were negative in organic-rich sediments (13.2% organic matter) with low porosity (56) and close to zero in coarse sediments with a low organic matter content (2.3%) and high porosity (73). Fluxes of inorganic N after resuspension were reduced to 70% and 0–20% in relation to the rates before resuspension, respectively. Received: 10 July 1995 · Accepted: 19 January 1996  相似文献   
3.
A steady-state reaction-transport model is applied to sediments retrieved by gravity core from two stations (S10 and S13) in the Skagerrak to determine the main kinetic and thermodynamic controls on anaerobic oxidation of methane (AOM). The model considers an extended biomass-implicit reaction network for organic carbon degradation, which includes extracellular hydrolysis of macromolecular organic matter, fermentation, sulfate reduction, methanogenesis, AOM, acetogenesis and acetotrophy. Catabolic reaction rates are determined using a modified Monod rate expression that explicitly accounts for limitation by the in situ catabolic energy yields. The fraction of total sulfate reduction due to AOM in the sulfate-methane transition zone (SMTZ) at each site is calculated. The model provides an explanation for the methane tailing phenomenon which is observed here and in other marine sediments, whereby methane diffuses up from the SMTZ to the top of the core without being consumed. The tailing is due to bioenergetic limitation of AOM in the sulfate reduction zone, because the methane concentration is too low to engender favorable thermodynamic drive. AOM is also bioenergetically inhibited below the SMTZ at both sites because of high hydrogen concentrations (∼3-6 nM). The model results imply there is no straightforward relationship between pore water concentrations and the minimum catabolic energy needed to support life because of the highly coupled nature of the reaction network. Best model fits are obtained with a minimum energy for AOM of ∼11 kJ mol−1, which is within the range reported in the literature for anaerobic processes.  相似文献   
4.
Seasonal dynamics of elemental sulfur in two coastal sediments   总被引:1,自引:0,他引:1  
A spectrophotometric method for elemental sulfur (S0) analysis without interference from other reduced sulfur compounds was adapted for the use in reducing sediments. The S0 distribution in two coastal sediments was studied regularly from summer to winter and compared to factors regulating the S0 accumulation, such as redox potentials, the rate of bacterial sulfide production and the general sulfur chemistry. Dense coatings of sulfur bacteria developed on the sediment surface of a sulfuretum which had an S0 concentration of up to 41 μmol S cm?3. The 2·5-mm thick bacterial coating contained 40% of all S0 in the sediment. A more typical marine sediment with a few cm thick oxidized surface layer had an S0 maximum of 1–3 μmol S cm?3 at 2–4 cm depth. The S0 maximum in both sediments increased from summer to winter as the sediments gradually became more oxidized. The deeper layers maintained a low S0 concentration. Most of the S0 in the upper few mm of a laboratory sulfuretum was present inside sulfur bacteria and actively migrated up and down with the bacteria depending upon the changing light and oxygen conditions.  相似文献   
5.
In this paper it is argued that the re-establishment of a metropolitan government in the Greater Copenhagen Area in 2000 (Greater Copenhagen Authority) is not to be seen as a return to the kind of regional, coordinative authority (Greater Copenhagen Council) that was abolished in the Thatcherite climate of the 1980s. Throughout the 1980s and 1990s new forms of urban governance, entrepreneurialism and a higher national priority to the capital region were introduced, which changed the conditions under which the new metropolitan government is operating. This `contextualization' of the analysis of the two generations of metropolitan government points to the fact that typologies of metropolitan government, such as the one put forward by Sharpe (1995), often lacks analytical cogency. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   
6.
Buried Quaternary valleys in Denmark are complex structures filled with various deposits consisting primarily of glacio-lacustrine clay, till and meltwater sand, and gravel. The valleys are important geophysical targets, because they often contain significant volumes of groundwater used for public water supply. About 700 km of buried valley structures have been imaged in the western part of Denmark by the transient electromagnetic (TEM) method. The ability to map the valleys depends primarily on valley geometry, infill architecture and the resistivity of the fill sediments as well as the substratum. One-dimensional (1-D) inversion models of the TEM soundings have been used to construct contour maps of 20 m average resistivities and depth to a good conductor, which provide images for geological interpretation. Images of buried valley morphology, fill properties, infill architecture, such as cut-and-fill structures, valley distribution and valley generations, are characterized for case studies from Hornsyld, Holstebro and the Vonsild/Agtrup areas of Denmark.  相似文献   
7.
We have discussed the behavior of a non-conserved scalar in the stationary, horizontally homogeneous, neutral surface-flux layer and, on the basis of conventional second-order closure, derived analytic expressions for flux and for mean concentration of a gas, subjected to a first-order removal process. The analytic flux solution showed a clear deviation from the constant flux, characterizing a conserved scalar in the surface-flux layer. It decreases with height and is reduced by an order of magnitude of the surface flux at a height equal to about the typical mean distance a molecule can travel before destruction. The predicted mean concentration profile, however, shows only a small deviation from the logarithmic behavior of a conserved scalar. The solution is consistent with assuming a flux-gradient relationship with a turbulent diffusivity corrected by the Damköhler ratio, the ratio of a characteristic turbulent time scale and the scalar mean lifetime. We show that if we use only first-order closure and neglect the effect of the Damköhler ratio on the turbulent diffusivity we obtain another analytic solution for the profiles of the flux and the mean concentration which, from an experimental point of view, is indistinguishable from the first analytic solution. We have discussed two cases where the model should apply, namely NO which, by night, is irreversibly destroyed by interaction with mainly O3 and the radioactive 220Rn. Only in the last case was it possible to find data to shed light on the validity of our predictions. The agreement seemed such that a falsification of our model was impossible. It is shown how the model can be used to predict the surface flux of 220Rn from measured concentration profiles.  相似文献   
8.
The main terminal processes of organic matter mineralization in anoxic Black Sea sediments underlying the sulfidic water column are sulfate reduction in the upper 2-4 m and methanogenesis below the sulfate zone. The modern marine deposits comprise a ca. 1-m-deep layer of coccolith ooze and underlying sapropel, below which sea water ions penetrate deep down into the limnic Pleistocene deposits from >9000 years BP. Sulfate reduction rates have a subsurface maximum at the SO42−-CH4 transition where H2S reaches maximum concentration. Because of an excess of reactive iron in the deep limnic deposits, most of the methane-derived H2S is drawn downward to a sulfidization front where it reacts with Fe(III) and with Fe2+ diffusing up from below. The H2S-Fe2+ transition is marked by a black band of amorphous iron sulfide above which distinct horizons of greigite and pyrite formation occur. The pore water gradients respond dynamically to environmental changes in the Black Sea with relatively short time constants of ca. 500 yr for SO42− and 10 yr for H2S, whereas the FeS in the black band has taken ca. 3000 yr to accumulate. The dual diffusion interfaces of SO42−-CH4 and H2S-Fe2+ cause the trapping of isotopically heavy iron sulfide with δ34S = +15 to +33‰ at the sulfidization front. A diffusion model for sulfur isotopes shows that the SO42− diffusing downward into the SO42−-CH4 transition has an isotopic composition of +19‰, close to the +23‰ of H2S diffusing upward. These isotopic compositions are, however, very different from the porewater SO42− (+43‰) and H2S (−15‰) at the same depth. The model explains how methane-driven sulfate reduction combined with a deep H2S sink leads to isotopically heavy pyrite in a sediment open to diffusion. These results have general implications for the marine sulfur cycle and for the interpretation of sulfur isotopic data in modern sediments and in sedimentary rocks throughout earth’s history.  相似文献   
9.
Low‐pressure and high‐temperature (LP–HT) metamorphism of basaltic rocks, which occurs globally and throughout geological time, is rarely constrained by forward phase equilibrium modelling, yet such calculations provide valuable supplementary thermometric information and constraints on anatexis that are not possible to obtain from conventional thermometry. Metabasalts along the southern margin of the Sudbury Igneous Complex (SIC) record evidence of high‐grade contact metamorphism involving partial melting and melt segregation. Peak metamorphic temperatures reached at least ~925°C at ~1–3 kbar near the SIC contact. Preservation of the peak mineral assemblage indicates that most of the generated melt escaped from these rocks leaving a residuum characterized by a plagioclase–orthopyroxene–clinopyroxene–ilmenite‐magnetite±melt assemblage. Peak temperatures reached ~875°C up to 500 m from the SIC lower contact, which marks the transition to metabasalts that only experienced incipient partial melting without melt loss. Metabasalts ~500 to 750 m from the SIC contact are characterized by a similar two‐pyroxene mineral assemblage, but typically contain abundant hornblende that overgrew clino‐ and orthopyroxene along an isobaric cooling path. Metabasalts ~750 to 1,000 m from the SIC contact are characterized by a hornblende–plagioclase–quartz–ilmenite assemblage indicating temperatures up to ~680°C. Mass balance and phase equilibria calculations indicate that anatexis resulted in 10–20% melt generation in the inner ~500 m of the aureole, with even higher degrees of melting towards the contact. Comparison of multiple models, experiments, and natural samples indicates that modelling in the Na2O–CaO–FeO–MgO–Al2O3–SiO2–H2O–TiO2–O2 (NCFMASHTO) system results in the most reliable predictions for the temperature of the solidus. Incorporation of K2O in the most recent amphibole solution model now successfully predicts dehydration melting by the coexistence of high‐Ca amphibole and silicate melt at relatively low pressures (~1.5 kbar). However, inclusion of K2O as a system component results in prediction of the solidus at too low a temperature. Although there are discrepancies between modelling predictions and experimental results, this study demonstrates that the pseudosection approach to mafic rocks is an invaluable tool to constrain metamorphic processes at LP–HT conditions.  相似文献   
10.
In this paper, we develop and apply a multi-dimensional vulnerability assessment framework for understanding the impacts of climate change-induced hazards in Sub-Saharan African cities. The research was carried out within the European/African FP7 project CLimate change and Urban Vulnerability in Africa, which investigated climate change-induced risks, assessed vulnerability and proposed policy initiatives in five African cities. Dar es Salaam (Tanzania) was used as a main case with a particular focus on urban flooding. The multi-dimensional assessment covered the physical, institutional, attitudinal and asset factors influencing urban vulnerability. Multiple methods were applied to cover the full range of vulnerabilities and to identify potential response strategies, including: model-based forecasts, spatial analyses, document studies, interviews and stakeholder workshops. We demonstrate the potential of the approach to assessing several dimensions of vulnerability and illustrate the complexity of urban vulnerability at different scales: households (e.g., lacking assets); communities (e.g., situated in low-lying areas, lacking urban services and green areas); and entire cities (e.g., facing encroachment on green and flood-prone land). Scenario modeling suggests that vulnerability will continue to increase strongly due to the expected loss of agricultural land at the urban fringes and loss of green space within the city. However, weak institutional commitment and capacity limit the potential for strategic coordination and action. To better adapt to urban flooding and thereby reduce vulnerability and build resilience, we suggest working across dimensions and scales, integrating climate change issues in city-level plans and strategies and enabling local actions to initiate a ‘learning-by-doing’ process of adaptation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号