首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   753篇
  免费   29篇
  国内免费   10篇
测绘学   15篇
大气科学   45篇
地球物理   134篇
地质学   306篇
海洋学   77篇
天文学   113篇
综合类   2篇
自然地理   100篇
  2022年   4篇
  2020年   9篇
  2019年   8篇
  2018年   19篇
  2017年   13篇
  2016年   29篇
  2015年   13篇
  2014年   23篇
  2013年   37篇
  2012年   16篇
  2011年   34篇
  2010年   27篇
  2009年   33篇
  2008年   38篇
  2007年   33篇
  2006年   28篇
  2005年   25篇
  2004年   19篇
  2003年   36篇
  2002年   23篇
  2001年   25篇
  2000年   18篇
  1999年   11篇
  1998年   24篇
  1997年   12篇
  1996年   14篇
  1995年   8篇
  1994年   13篇
  1993年   12篇
  1992年   12篇
  1991年   13篇
  1990年   11篇
  1989年   9篇
  1988年   9篇
  1987年   4篇
  1986年   4篇
  1985年   6篇
  1984年   17篇
  1983年   9篇
  1982年   13篇
  1981年   11篇
  1980年   6篇
  1979年   7篇
  1978年   6篇
  1977年   5篇
  1976年   7篇
  1975年   6篇
  1974年   6篇
  1973年   9篇
  1970年   3篇
排序方式: 共有792条查询结果,搜索用时 15 毫秒
1.
NASA's Genesis mission was flown to capture samples of the solar wind and return them to the Earth for measurement. The purpose of the mission was to determine the chemical and isotopic composition of the Sun with significantly better precision than known before. Abundance data are now available for noble gases, magnesium, sodium, calcium, potassium, aluminum, chromium, iron, and other elements. Here, we report abundance data for hydrogen in four solar wind regimes collected by the Genesis mission (bulk solar wind, interstream low‐energy wind, coronal hole high‐energy wind, and coronal mass ejections). The mission was not designed to collect hydrogen, and in order to measure it, we had to overcome a variety of technical problems, as described herein. The relative hydrogen fluences among the four regimes should be accurate to better than ±5–6%, and the absolute fluences should be accurate to ±10%. We use the data to investigate elemental fractionations due to the first ionization potential during acceleration of the solar wind. We also use our data, combined with regime data for neon and argon, to estimate the solar neon and argon abundances, elements that cannot be measured spectroscopically in the solar photosphere.  相似文献   
2.
Beavers, primarily through the building of dams, can deliver significant geomorphic modifications and result in changes to nutrient and sediment fluxes. Research is required to understand the implications and possible benefits of widespread beaver reintroduction across Europe. This study surveyed sediment depth, extent and carbon/nitrogen content in a sequence of beaver pond and dam structures in South West England, where a pair of Eurasian beavers (Castor fiber) were introduced to a controlled 1.8 ha site in 2011. Results showed that the 13 beaver ponds subsequently created hold a total of 101.53 ± 16.24 t of sediment, equating to a normalised average of 71.40 ± 39.65 kg m2. The ponds also hold 15.90 ± 2.50 t of carbon and 0.91 ± 0.15 t of nitrogen within the accumulated pond sediment. The size of beaver pond appeared to be the main control over sediment storage, with larger ponds holding a greater mass of sediment per unit area. Furthermore, position within the site appeared to play a role with the upper‐middle ponds, nearest to the intensively‐farmed headwaters of the catchment, holding a greater amount of sediment. Carbon and nitrogen concentrations in ponds showed no clear trends, but were significantly higher than in stream bed sediment upstream of the site. We estimate that >70% of sediment in the ponds is sourced from the intensively managed grassland catchment upstream, with the remainder from in situ redistribution by beaver activity. While further research is required into the long‐term storage and nutrient cycling within beaver ponds, results indicate that beaver ponds may help to mitigate the negative off‐site impacts of accelerated soil erosion and diffuse pollution from agriculturally dominated landscapes such as the intensively managed grassland in this study. © 2018 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd.  相似文献   
3.
The vast majority of microorganisms in aquifers live as biofilms on sediment surfaces, which presents significant challenges for sampling as only the suspended microbes will be sampled through normal pumping. The use of a down-well low frequency sonicator has been suggested as a method of detaching microbes from the biofilm and allowing rapid sampling of this community. We developed a portable, easy to use, low-frequency electric sonicator and evaluated its performance for a range of well depths (tested up to 42 m below ground level) and casing types. Three sonicators were characterized in laboratory experiments using a 1 m long tank filled with pea gravel. These included a commercially available pneumatic sonicator, a rotating flexible shaft sonicator, and the prototype electric sonicator. The electric sonicator detached between 56 and 74% of microbes grown on gravel-containing biobags at distances ranging between 2 and 50 cm from the sonicator. The field testing comprises of a total of 55 sampling events from 48 wells located in 4 regions throughout New Zealand. Pre- and post-sonication samples showed an average 33 times increase in bacterial counts. Microbial sequence data showed that the same classes are present in pre- and post-sonicated samples and only slight differences were seen in the proportions present. The sampling process was rapid and the significant increases in bacterial counts mean that microbial samples can be quickly obtained from wells, which permits more detailed analysis than previously possible.  相似文献   
4.
In this study, we used data recorded by two consecutive passive broadband deployments on the Gulf of Aden northern margin, Dhofar region, Sultanate of Oman. The objective of these deployments is to map the young eastern Gulf of Aden passive continental margin crust and upper mantle structure and rheology. In this study, we use shear-wave splitting analysis to map lateral variations of upper mantle anisotropy beneath the study area. In this study, we found splitting magnitudes to vary between 0.33 and 1.0 s delay times, averaging about 0.6 s for a total of 17 stations from both deployment periods. Results show distinct abrupt lateral anisotropy variation along the study area. Three anisotropy zones are identified: a western zone dominated by NW–SE anisotropy orientations, an eastern zone dominated with NE–SW anisotropy orientations, and central zone with mixed anisotropy orientations similar to the east and west zones. We interpret these shorter wavelength anisotropy zones to possibly represent fossil lithospheric mantle anisotropy. We postulate that the central anisotropy zone may be representing a Proterozoic suture zone that separates two terranes to the east and west of it. The anisotropy zones west and east were being used indicative of different terranes with different upper mantle anisotropy signatures.  相似文献   
5.
The ˜4000 m thick and ∼20 Myr deep-water sedimentary fill of the Upper Cretaceous Magallanes Basin was deposited in three major phases, each with contrasting stratigraphic architecture: (1) the oldest deep-water formation (Punta Barrosa Formation) comprises tabular to slightly lenticular packages of interbedded sandy turbidites, slurry-flow deposits, and siltstone that are interpreted to record lobe deposition in an unconfined to weakly ponded setting; (2) the overlying, 2500 m thick and shale-dominated Cerro Toro Formation includes a succession of stacked conglomeratic and sandstone channel-fill deposits with associated finer-grained overbank deposits interpreted to record deposition in a foredeep-axial channel-levee system; (3) the final phase of deep-water sedimentation is characterized by sandstone-rich successions of highly variable thickness and cross-sectional geometry and mudstone-rich mass transport deposits (MTDs) that are interpreted to record deposition at the base-of-slope and lower slope segments of a prograding delta-fed slope system. The deep-water formations are capped by shallow-marine and deltaic deposits of the Dorotea Formation.These architectural changes are associated with the combined influences of tectonically driven changes and intrinsic evolution, including: (1) the variability of amount and type of source material, (2) variations in basin shape through time, and (3) evolution of the fill as a function of prograding systems filling the deep-water accommodation. While the expression of these controls in the stratigraphic architecture of other deep-water successions might differ in detail, the controls themselves are common to all deep-water basins. Information about source material and basin shape is contained within the detrital record and, when integrated and analyzed within the context of stratigraphic patterns, attains a more robust linkage of processes to products than stratigraphic characterization alone.  相似文献   
6.
The vertical flux of particulate matter from the surface of the Ross Sea, Antarctica, has been suggested as being large, with substantial seasonal and spatial variations. We conducted a study in which vertical flux was quantified using sediment traps deployed at 200 m and compared to estimates calculated from one-dimensional budgets of nutrients (nitrogen and silicon). Estimates of flux were collected at two locations in the southern Ross Sea from late December to early February during four years: 2001-2002, 2003-2004, 2004-2005, and 2005-2006. Phytoplankton biomass and vertical flux varied substantially seasonally and spatially between the two sites, and among years. The greatest flux was observed in 2001-2002, with a short-term maximum organic carbon flux of 3.13 mmol m−2 d−1, and the summer mean organic carbon flux equal to 0.93 mmol m−2 d−1. In contrast, the mean carbon flux at the same site in 2003-2004 was over an order of magnitude less, averaging 0.19 mmol m−2 d−1, despite the fact that productivity in that year was substantially greater. In 2005-206 the contribution of fecal pellets to flux was smallest among all years, and the pellet contribution ranged from <1 to more than 50% of organic flux. As the moorings also had surface layer fluorometers, the relationship between surface biomass and sediment trap flux was compared. Temporal lags between surface fluorescence and flux at 200 m maxima in 2003-2004 and 2004-2005 ranged from two to six days; however, in 2005-2006 the temporal offset between biomass and flux was much longer, ranging from 11 to 27 days, suggesting that fecal pellet production appeared to increase the coupling between flux and surface production. Estimates of export from the upper 200 m based on one-dimensional nutrient budgets were greater than those recorded by the sediment traps. Nutrient budgets also indicated that siliceous production averaged ca. 40% of the total annual production. The variations observed in the flux of biogenic matter to depth in the Ross Sea are large, appear to reflect different forcing among years, and at present are not adequately understood. However, such variability needs to be both understood and represented in biogeochemical models to accurately assess and predict the effects of climate change on biogeochemical cycles.  相似文献   
7.
Many countries now recognise the need for mitigation of climate change induced by human activities and have incorporated renewable energy resources within their energy policy. There are extensive resources of renewable energy within the marine environment and increasing interest in extracting energy from locations with either large tidal range, rapid flow with and without wave interaction, or large wave resources. However, the ecological implications of altering the hydrodynamics of the marine environment are poorly understood. Ecological data for areas targeted for marine renewable developments are often limited, not least because of the considerable challenges to sampling in high energy environments. In order to predict the scale and nature of ecological implications there is a need for greater understanding of the distribution and extent of the renewable energy resource and in turn, of how marine renewable energy installations (MREIs) may alter energy in the environment. Regional ecological implications of a MREI need to be considered against the greater and global ecological threat of climate change. Finally, it is recommended that the identification of species and biotopes susceptible to the removal of hydrokinetic energy could be a suitable strategy for understanding how a MREI may alter flow conditions.  相似文献   
8.
Brothers volcano, of the Kermadec intraoceanic arc, is host to a hydrothermal system unique among seafloor hydrothermal systems known anywhere in the world. It has two distinct vent fields, known as the NW Caldera and Cone sites, whose geology, permeability, vent fluid compositions, mineralogy, and ore-forming conditions are in stark contrast to each other. The NW Caldera site strikes for ??600?m in a SW?CNE direction with chimneys occurring over a ??145-m depth interval, between ??1,690 and 1,545?m. At least 100 dead and active sulfide chimney spires occur in this field and are typically 2?C3?m in height, with some reaching 6?C7?m. Their ages (at time of sampling) fall broadly into three groups: <4, 23, and 35?years old. The chimneys typically occur near the base of individual fault-controlled benches on the caldera wall, striking in lines orthogonal to the slopes. Rarer are massive sulfide crusts 2?C3?m thick. Two main types of chimney predominate: Cu-rich (up to 28.5?wt.% Cu) and, more commonly, Zn-rich (up to 43.8?wt.% Zn). Geochemical results show that Mo, Bi, Co, Se, Sn, and Au (up to 91?ppm) are correlated with the Cu mineralization, whereas Cd, Hg, Sb, Ag, and As are associated with the dominant Zn-rich mineralization. The Cone site comprises the Upper Cone site atop the summit of the recent (main) dacite cone and the Lower Cone site that straddles the summit of an older, smaller, more degraded dacite cone on the NE flank of the main cone. Huge volumes of diffuse venting are seen at the Lower Cone site, in contrast to venting at both the Upper Cone and NW Caldera sites. Individual vents are marked by low-relief (??0.5?m) mounds comprising predominately native sulfur with bacterial mats. Vent fluids of the NW Caldera field are focused, hot (??300°C), acidic (pH????2.8), metal-rich, and gas-poor. Calculated end-member fluids from NW Caldera vents indicate that phase separation has occurred, with Cl values ranging from 93% to 137% of seawater values. By contrast, vent fluids at the Cone site are diffuse, noticeably cooler (??122°C), more acidic (pH?1.9), metal-poor, and gas-rich. Higher-than-seawater values of SO4 and Mg in the Cone vent fluids show that these ions are being added to the hydrothermal fluid and are not being depleted via normal water/rock interactions. Iron oxide crusts 3?years in age cover the main cone summit and appear to have formed from Fe-rich brines. Evidence for magmatic contributions to the hydrothermal system at Brothers includes: high concentrations of dissolved CO2 (e.g., 206?mM/kg at the Cone site); high CO2/3He; negative ??D and ??18OH2O for vent fluids; negative ??34S for sulfides (to ?4.6??), sulfur (to ?10.2??), and ??15N2 (to ?3.5??); vent fluid pH values to 1.9; and mineral assemblages common to high-sulfidation systems. Changing physicochemical conditions at the Brothers hydrothermal system, and especially the Cone site, occur over periods of months to hundreds of years, as shown by interlayered Cu?+?Au- and Zn-rich zones in chimneys, variable fluid and isotopic compositions, similar shifts in 3He/4He values for both Cone and NW Caldera sites, and overprinting of ??magmatic?? mineral assemblages by water/rock-dominated assemblages. Metals, especially Cu and possibly Au, may be entering the hydrothermal system via the dissolution of metal-rich glasses. They are then transported rapidly up into the system via magmatic volatiles utilizing vertical (??2.5?km long), narrow (??300-m diameter) ??pipes,?? consistent with evidence of vent fluids forming at relatively shallow depths. The NW Caldera and Cone sites are considered to represent stages along a continuum between water/rock- and magmatic/hydrothermal-dominated end-members.  相似文献   
9.
Hydrogen gas produced in the subsurface from the hydration of mafic rocks is known to be a major energy source for chemolithotrophic life in extreme environments such as hydrothermal vents. The possibility that in situ anaerobic microorganisms present in the deep subsurface are sustained by low temperature H2-generating water–rock reactions taking place around them is being investigated. Whether the growth and activity of H2-utilizing microbes directly influences aqueous geochemistry, rates of mineral dissolution, and the chemical composition of the alteration products is also being quantitatively evaluated.To explore how microorganisms are affected by water–rock reactions, and how their activity may in turn affect reaction progress, laboratory experiments have been conducted to monitor the growth of a methanogenic Archaea in the presence of H2(g) produced from low temperature water–Fe0–basalt reactions. In these systems, the conversion of Fe(II) to Fe(III) and subsequent hydrolysis of water is responsible for the production of H2(g). To characterize key components of the geochemical system, time series measurements of H2 and CH4 gas concentrations, Fe and Si aqueous concentrations, and spatially resolved synchrotron-based analyses of microscale Fe distribution and speciation were conducted. Culture experiments were compared with an abiotic control to document changes in the geochemistry both in the presence and absence of the methanogen.In the control abiotic batch experiment, H2 was continuously produced, until the headspace became saturated, while in the biotic experiments, microbial consumption of H2 for methanogenesis draws H2 down and produces CH4. Purging the headspace gas reinitiates H2 and CH4 production in abiotic and culture experiments, respectively. Mass balance analysis of the amount of CH4 produced suggests that the total H2 production in microbial experiments does not exceed the abiotic experiment. Soluble Si concentrations, while buffered to relatively constant values, were higher in culture experiments than the abiotic control.Iron(aq) concentrations appear to respond to perturbations of H2 and CH4 gas concentrations in both culture experiments and the abiotic control. A pulse of Fe preceded the rise in either H2 or CH4 production, and as the gas concentrations increased the Fe(aq) decreased. Iron-bearing mineral assemblages change with increasing reaction time and mineral assemblages vary between culture experiments and the abiotic control. These geochemical trends suggest that there are different reaction paths between the culture experiments and the abiotic control.The hydration of mafic rocks is a common geologic reaction and one that has taken place on Earth for the majority of its history and is postulated to occur on Mars. These reactions are important because of their effect on the rheology and geochemistry of the ocean crust. While most often studied at temperatures of ~250 °C, this work suggests that at lower temperatures microorganisms may have a profound effect on what has long been thought to be solely an abiotic reaction, and may produce diagnostic mineral assemblages that will be preserved in the geological record.  相似文献   
10.
In this study, we implement Particle Filter (PF)-based assimilation algorithms to improve root-zone soil moisture (RZSM) estimates from a coupled SVAT-vegetation model during a growing season of sweet corn in North Central Florida. The results from four different PF algorithms were compared with those from the Ensemble Kalman Filter (EnKF) when near-surface soil moisture was assimilated every 3 days using both synthetic and field observations. In the synthetic case, the PF algorithm with the best performance used residual resampling of the states and obtained resampled parameters from a uniform distribution and provided reductions of 76% in root mean square error (RMSE) over the openloop estimates. The EnKF provided the RZSM and parameter estimates that were closer to the truth than the PF with an 84% reduction in RMSE. When field observations were assimilated, the PF algorithm that maintained maximum parameter diversity offered the largest reduction of 16% in root mean square difference (RMSD) over the openloop estimates. Minimal differences were observed in the overall performance of the EnKF and PF using field observations since errors in model physics affected both the filters in a similar manner, with maximum reductions in RMSD compared to the openloop during the mid and reproductive stages.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号