首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   54篇
  免费   9篇
  国内免费   5篇
测绘学   1篇
大气科学   1篇
地球物理   8篇
地质学   28篇
海洋学   4篇
天文学   12篇
自然地理   14篇
  2021年   2篇
  2020年   10篇
  2019年   1篇
  2018年   1篇
  2017年   1篇
  2016年   4篇
  2015年   3篇
  2014年   2篇
  2013年   3篇
  2012年   4篇
  2011年   2篇
  2010年   2篇
  2009年   4篇
  2007年   1篇
  2006年   3篇
  2005年   1篇
  2004年   1篇
  2002年   3篇
  2001年   1篇
  2000年   1篇
  1997年   2篇
  1996年   4篇
  1995年   5篇
  1992年   1篇
  1988年   1篇
  1984年   3篇
  1983年   1篇
  1976年   1篇
排序方式: 共有68条查询结果,搜索用时 437 毫秒
1.
The South China Sea continental margin in the Qiongdongnan Basin (QDNB) area has incrementally prograded since 10.5 Ma generating a margin sediment prism more than 4km-thick and 150–200 km wide above the well-dated T40 stratigraphic surface. Core and well log data, as well as clinoform morphology and growth patterns along 28 2D seismic reflection lines, illustrate the evolving architecture and margin morphology; through five main seismic-stratigraphic surfaces (T40, T30, T27, T20 and T0) frame 15 clinothems in the southwest that reduce over some 200 km to 8 clinoforms in the northeast. The overall margin geometry shows a remarkable change from sigmoidal, strongly progradational and aggradational in the west to weakly progradational in the east. Vertical sediment accumulation rate increased significantly across the entire margin after 2.4 Ma, with a marked increase in mud content in the succession. Furthermore, an estimate of sediment flux across successive clinoforms on each of the three selected seismic cross sections indicate an overall decrease in sediment discharge west to east, away from the Red River depocenter, as well as a decrease in the percentage of total discharge crossing the shelf break in this same direction. The QDNB Late Cenozoic continental margin growth, with its overall increased sediment flux, responded to the climate-induced, gradual cooling and falling global sea level during this icehouse period.  相似文献   
2.
3.
Lacustrine basins and their deposits are good paleoclimate recorders and contain rich energy resources. Shelf-margin clinoforms do exist in deep lacustrine basins, but with striking differences from those in deep marine basins, caused by a correlation between the river-derived sediment supply and the lake level. This study uses empirical relationships to calculate the water and sediment discharge from rivers and coeval lake level during wet–dry cycles at 10 s of ky time scale. Sediment supply and lake-level changes are used for a stratigraphic forward model to understand how lacustrine clinoforms develop under different climate conditions. The results show that both wet and dry cycles can be associated with thick deep-water fan deposits, supporting the existing climate-driven lacustrine model proposed based on field data (e.g. Neogene Pannonian Basin and Eocene Uinta Basin). The wet period with high sediment supply and rising lake level creates the highly aggradational shelf, progradational slope and thick bottomset deposits. This is contrary from marine basin settings where the presence of rising shelf-margin trajectory commonly indicates limited deep-water fan deposits. This work suggests marine-based stratigraphic models cannot be directly applied to lacustrine basins.  相似文献   
4.
Classic sequence stratigraphy suggests depositional sequences can form due to changes in accommodation and due to changes in sediment supply. Accommodation‐dominated sequences are problematic to define rigorously, but are commonly interpreted from outcrop and subsurface data. In contrast, supply‐dominated sequences are much less commonly identified. We employ numerical stratigraphic forward modelling to compare stratal geometries forced by cyclic changes in relative sea level with stratal geometries forced by sediment discharge and water discharge changes. Our quantitative results suggest that both relative sea‐level oscillations and variations in sediment/water discharge ratio are able to form sequence‐bounding unconformities independently, confirming previous qualitative sequences definitions. In some of the experiments, the two types of sequence share several characteristics, such as an absence of coastal‐plain topset deposits and stratal offlap, something typically interpreted as the result of falling relative sea level. However, the stratal geometries differ when variations in amplitude and frequency of relative sea‐level change, sediment/water discharge ratio, transport diffusion coefficient and initial bathymetry are applied. We propose that the supply‐dominated sequences could be recognised in outcrop or in the subsurface if the observations of stratal offlap and the absence of coastal‐plain topset can be made without any strong evidence of relative sea‐level fall (e.g. descending shoreline trajectory). These quantitative results suggest that both supply‐dominated and accommodation‐dominated sequences are likely to occur in the ancient record, as a consequence of multiple, possibly complex, controls.  相似文献   
5.
The application of geometric modeling to shelf‐margin stratigraphy has the potential to constrain interpretations of external forcings on margin development. Here we apply such a model to the Ebro margin in order to complement the analysis of Kertznus & Kneller (2009) . Our results suggest that increased mass wasting in the Pleistocene was unlikely to have been a factor in the observed long‐term shelf‐edge trajectory, and that the trajectory can be explained by the interaction of sediment flux, relative sea‐level rise, and basin shape.  相似文献   
6.
Abstract

We establish a nonlinear stability result for convection in a generalized incompressible fluid. Both numerical calculations and an asymptotic analysis are carried out. The linear and nonlinear results are shown to be very close in both cases, implying that the region of possible subcritical instabilities is very small.

During this work I was supported by a research studentship awarded by the Science and Engineering Council of the United Kingdom.  相似文献   
7.
The present study attempts to formulate a regression model to predict summer rainfall over Peninsular India (PIR) using some regional predictors. Parameters having significant correlation (99%) with PIR were identified for the period 1975–1997 (training), and a 15-year sliding correlation (90%) was found to check the consistency of the relationship between PIR and predictors. From a set of 14 candidate predictors, 4 were selected using a stepwise regression method and tested over a period from 1998 to 2006. The predictors selected are sea surface temperature during March over Indian Ocean, air temperature at 850?hPa during May over Peninsular India, zonal, and meridional wind at 700?hPa during February and January, respectively, over the Arabian Sea. The model captures a variance of 77.7% and has a multiple correlation of 0.88. The root mean square error, absolute mean error, and bias for the training (test) period were 7.6% (21.5%), 6.6% (17.9%), and 0% (11.4%) of mean rainfall, respectively. Results of the climatological predictions show that the model developed is useful.  相似文献   
8.
Late‐middle Miocene to Pliocene siliciclastics in the Northern Carnarvon Basin, Northwest Shelf of Australia, are interpreted as having been deposited by deltas. Some delta lobes deposited sediments near and at the shelf break (shelf‐edge deltas), whereas other lobes did not reach the coeval shelf break before retreating landward or being abandoned. Shelf‐margin mapview morphology changes from linear to convex‐outward in the northern part of the study area where shelf‐edge deltas were focused. Location and character of shelf‐edge deltas also had significant impact on along‐strike variability of margin progradation and shelf‐edge trajectory. Total late‐middle and late Miocene margin progradation is ca. 13 km in the south, where there were no shelf‐edge deltas, vs. ca. 34 km in the north where shelf‐edge deltas were concentrated. In the central area, the deltas were arrested and accumulated a few kilometres landward of the shelf break, resulting in an aggradational shelf‐edge trajectory, in contrast to the more progradational trajectory farther north. This illustrates a potential limitation of shelf‐edge trajectory analysis: only where shelf‐edge deltas occur, there is sufficient sediment available for the shelf‐edge trajectory to record relative sea‐level fluctuations reliably. Small‐scale (ca. 400 m wide) incisions were already conspicuous on the coeval slope even before deltas reached the shelf break. However, slope gullies immediately downdip from active shelf‐edge deltas display greater erosion of underlying strata and are wider and deeper (>1 km wide, ca. 100 m deep) than coeval incisions that are laterally offset from the deltaic depocenter (ca. 0.7 km wide, ca. 25 m deep). We interpret this change in slope‐gully dimensions as the result of greater erosion by sediment gravity flows sourced from the immediately adjacent shelf‐edge deltas. Similarly, gullies also incised further (up to 6 km) into the outer shelf in the region of active shelf‐edge deltas.  相似文献   
9.
Shelf‐edge deltas are a key depositional environment for accreting sediment onto shelf‐margin clinoforms. The Moruga Formation, part of the palaeo‐Orinoco shelf‐margin sedimentary prism of south‐east Trinidad, provides new insight into the incremental growth of a Pliocene, storm wave‐dominated shelf margin. Relatively little is known about the mechanisms of sand bypass from the shelf‐break area of margins, and in particular from storm wave‐dominated margins which are generally characterized by drifting of sand along strike until meeting a canyon or channel. The studied St. Hilaire Siltstone and Trinity Hill Sandstone succession is 260 m thick and demonstrates a continuous transition from gullied (with turbidites) uppermost slope upward to storm wave‐dominated delta front on the outermost shelf. The basal upper‐slope deposits are dominantly mass‐transport deposited blocks, as well as associated turbidites and debrites with common soft‐sediment‐deformed strata. The overlying uppermost slope succession exhibits a spectacular set of gullies, which are separated by abundant slump‐scar unconformities (tops of rotational slides), then filled with debris‐flow conglomerates and sandy turbidite beds with interbedded mudstones. The top of the study succession, on the outer‐shelf area, contains repeated upward‐coarsening, sandstone‐rich parasequences (2 to 15 m thick) with abundant hummocky and swaley cross‐stratification, clear evidence of storm‐swell and storm wave‐dominated conditions. The observations suggest reconstruction of the unstable shelf margin as follows: (i) the aggradational storm wave‐dominated, shelf‐edge delta front became unstable and collapsed down the slope; (ii) the excavated scars of the shelf margin became gullied, but gradually healed (aggraded) by repeated infilling by debris flows and turbidites, and then new gullying and further infilling; and (iii) a renewed storm wave‐dominated delta‐front prograded out across the healed outer shelf, re‐establishing the newly stabilized shelf margin. The Moruga Formation study, along with only a few others in the literature, confirms the sediment bypass ability of storm wave‐dominated reaches of shelf edges, despite river‐dominated deltas being, by far, the most efficient shelf‐edge regime for sediment bypass at the shelf break.  相似文献   
10.
A tectonostratigraphic model for the evolution of rift basins has been built, involving three distinct stages of basin development separated by key unconformities or unconformity complexes. The architecture and signature of the sediment infill for each stage are discussed, with reference to the northern North Sea palaeorift system. The proto-rift stage describes the rift onset with either doming or flexural subsidence. In the case of early doming, a proto-rift unconformity separates this stage from the subsequent main rift stage. Active stretching and rotation of fault blocks during the rift stage is terminated by the development of the syn-rift unconformity. Where crustal separation is accomplished, a break-up unconformity commonly marks the boundary to the overlying thermal relaxation or post-rift stage. Tabular architectures, thickening across relatively steep faults, characterize the proto-rift stage. Syn-rift architectures are much more variable. Depending on the ability of the sediment supply to fill the waxing and waning accommodation created during rotation and subsidence, one-, two- or three-fold lithosome architectures are likely to develop. During the post-rift stage, an early phase with coarse clastic infilling of remnant rift topography often precedes late stage widening of the basin and filling with fine-grained sediments.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号