首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   81篇
  免费   9篇
测绘学   7篇
大气科学   6篇
地球物理   41篇
地质学   27篇
海洋学   1篇
天文学   1篇
自然地理   7篇
  2022年   2篇
  2021年   3篇
  2020年   8篇
  2019年   4篇
  2018年   4篇
  2017年   3篇
  2016年   7篇
  2015年   3篇
  2014年   6篇
  2013年   11篇
  2012年   3篇
  2011年   4篇
  2010年   2篇
  2009年   5篇
  2008年   6篇
  2007年   1篇
  2006年   1篇
  2005年   1篇
  2004年   2篇
  2003年   2篇
  2002年   4篇
  2001年   2篇
  2000年   1篇
  1992年   2篇
  1990年   3篇
排序方式: 共有90条查询结果,搜索用时 225 毫秒
1.
This paper proposes a new approach for the assessment of the dynamic response of continuously supported infinite beams under high‐speed moving loads. A change in the representation of equations of motion in the dynamics of discrete structures is proposed to obtain an improved accuracy of the numerical integration in the time domain. The proposed numerical method called the “periodic configuration update” or “PCU method” is applied to solve the problem of a vertical moving harmonic load on an infinite classical Euler‐Bernoulli beam resting on a continuous viscoelastic foundation. This study shows the superiority of the proposed method in comparison with other methods presented in the literature that suffer from the material time derivative, i.e., convective terms, that arises from the Galilean transformation. To confront this numerical problem, the PCU method retains the principle of the spatial follow of loads while zeroing the relative velocity with the traversed beam via a step‐by‐step adaptive integration of the equation of structural dynamics. The dynamic load is modeled with high theoretical velocities that can reach the critical velocity of the studied beam with different angular frequencies belonging to moderate frequency range. A parametric study is carried out to analyze the influence of key parameters on the convergence. The obtained results show a high efficiency of the PCU method for solving these types of problems relative to the dynamics of high speed trains/tracks.  相似文献   
2.
Extreme climate events have been identified both in meteorological and long-term proxy records from the Indian summer monsoon (ISM) realm. However, the potential of palaeoclimate data for understanding mechanisms triggering climate extremes over long time scales has not been fully exploited. A distinction between proxies indicating climate change, environment, and ecosystem shift is crucial for enabling a comparison with forcing mechanisms (e.g. El-Niño Southern Oscillation). In this study we decouple these factors using data analysis techniques [multiplex recurrence network (MRN) and principal component analyses (PCA)] on multiproxy data from two lakes located in different climate regions – Lonar Lake (ISM dominated) and the high-altitude Tso Moriri Lake (ISM and westerlies influenced). Our results indicate that (i) MRN analysis, an indicator of changing environmental conditions, is associated with droughts in regions with a single climate driver but provides ambiguous results in regions with multiple climate/environmental drivers; (ii) the lacustrine ecosystem was ‘less sensitive’ to forcings during the early Holocene wetter periods; (iii) archives in climate zones with a single climate driver were most sensitive to regime shifts; (iv) data analyses are successful in identifying the timing of onset of climate change, and distinguishing between extrinsic and intrinsic (lacustrine) regime shifts by comparison with forcing mechanisms. Our results enable development of conceptual models to explain links between forcings and regional climate change that can be tested in climate models to provide an improved understanding of the ISM dynamics and their impact on ecosystems. © 2020 John Wiley & Sons, Ltd.  相似文献   
3.
This paper presents the results of triaxial tests conducted for the investigation of the influence of geotextile on both the stress–strain and volumetric change behavior of reinforced sands. Tests were carried out on loose sand. The experimental program includes drained compression tests on samples reinforced with different values of both geotextile layers (1 ≤ Ng ≤ 3) and confining pressure (\(\upsigma_{\text{c}}^{\prime }\)) varying from 50 to 200 kPa. Tests show that the contribution of geotextile is negligible until an axial strain threshold that range between 2.5% for a confining pressure of 50 kPa to lower than 1% for 100 and 200 kPa confining pressure. At higher values of εa, geotextile induces a quasi-linear increase in the stress deviator (q) and volume contraction in the reinforced sand. Tests show a negligible influence of the number of geotextile layers (Ng) on the contribution of geotextile to both stress–strain and volumetric change, when normalized with Ng. Tests also show that the contribution of geotextile to the stress–strain mobilization augments with the increase in the confining pressure, while its contribution to the volume contraction decreases with the increase in the confining pressure. The reinforced soil becomes contracting in the case of 2 and 3 geotextile layers.  相似文献   
4.
Tracer studies are a commonly used tool to develop and test Einstein-type stochastic bedload transport models. The movements of these tracers are controlled by many factors including grain characteristics, hydrologic forcing, and channel morphology. Although the influence of these sediment storage zones related to morphological features (e.g., bars, pools, riffles) have long been observed to “trap” bedload particles in transport, this influence has not been adequately quantified. In this paper we explore the influence of channel morphology on particle travel distances through the development of a Bayesian survival process model. This model simulates particle path length distributions using a location-specific “trapping probability” parameter (pi ), which is estimated using the starting and ending locations of bedload tracers. We test this model using a field tracer study from Halfmoon Creek, Colorado. We find that (1) the model is able to adequately recreate the observed multi-modal path length distributions, (2) particles tend to accumulate in trapping zones, especially during large floods, and (3) particles entrained near a trapping zone will travel a shorter distance than one that is further away. Particle starting positions can affect path lengths by as much as a factor of two, which we confirm by modelling “starting-location-specific” path length probability distributions. This study highlights the importance of considering both tracer locations and channel topography in examinations of field tracer studies. © 2020 John Wiley & Sons, Ltd.  相似文献   
5.
Gravel road surfaces can be a major source of fine sediment to streams, yet their contribution to channel reach sediment balances remains poorly documented. To quantify the input of road surface material and to compare this input with natural sediment sources at the reach scale, suspended sediment dynamics was examined and a 16‐month sediment balance was developed for a ~35 channel‐width (approx. 425 m) reach of the Honna River, a medium‐size, road‐affected stream located in coastal British Columbia. Of the 105 ± 33 t of suspended material passing through the reach, 18 ± 6% was attributed to the road surface. The high availability of sediment on the road surface appears to limit hysteresis in road run‐off. During rainstorms that increase streamflow, road surface material composed 0.5–15% of sediment inputs during relatively dry conditions from April to the end of September and 5–70% through wetter conditions from October to the end of March, but our data do not show evidence of major sediment accumulation on the riverbed in the reach. A comparison of modelled sediment production on the road surface with observed yields from drainage channels suggests that (1) during low intensity rainfall, ditches and drainage channels may trap sediment from road run‐off, which is subsequently released during events of greater intensity, and/or (2) production models do not effectively describe processes, such as deposition or erosion of sediment in ditches, which control sediment transport and delivery. Our findings further emphasize the risk of unpaved roads in polluting river systems and highlight the continued need for careful road design and location away from sensitive aquatic environments. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
6.
The Lower Cretaceous Fortress Mountain Formation occupies a spatial and temporal niche between syntectonic deposits at the Brooks Range orogenic front and post‐tectonic strata in the Colville foreland basin. The formation includes basin‐floor fan, marine‐slope and fan‐delta facies that define a clinoform depositional profile. Texture and composition of clasts in the formation suggest progressive burial of a tectonic wedge‐front that included older turbidites and mélange. These new interpretations, based entirely on outcrop study, suggest that the Fortress Mountain Formation spans the boundary between orogenic wedge and foredeep, with proximal strata onlapping the tectonic wedge‐front and distal strata downlapping the floor of the foreland basin. Our reconstruction suggests that clinoform amplitude reflects the structural relief generated by tectonic wedge development and load‐induced flexural subsidence of the foreland basin.  相似文献   
7.
Both increasing aridity and population growth strongly stress freshwater resources in semi-arid areas such as Jordan. The country’s second largest governorate, Irbid, with over 1 million inhabitants, is already suffering from an annual water deficit of 25 million cubic meters (MCM). The population is expected to double within the next 20 years. Even without the large number of refugees from Syria, the deficit will likely increase to more then 50 MCM per year by 2035 The Governorate’s exclusive resource is groundwater, abstracted by the extensive Al Arab and Kufr Asad well fields. This study presents the first three-dimensional transient regional groundwater flow model of the entire Wadi al Arab to answer important questions regarding the dynamic quality and availability of water within the catchment. Emphasis is given to the calculation and validation of the dynamic groundwater recharge, derived from a multi-proxy approach, including (1) a hydrological model covering a 30-years dataset, (2) groundwater level measurements and (3) information about springs. The model enables evaluation of the impact of abstraction on the flow regime and the groundwater budget of the resource. Sensitivity analyses of controlling parameters indicate that intense abstraction in the southern part of the Wadi al Arab system can result in critical water-level drops of 10 m at a distance of 16 km from the production wells. Moreover, modelling results suggest that observed head fluctuations are strongly controlled by anthropogenic abstraction rather than variable recharge rates due to climate changes.  相似文献   
8.
Internal variability of the Asian monsoon system and the relationship amongst its sub-systems, the Indian and East Asian Summer Monsoon, are not sufficiently understood to predict its responses to a future warming climate. Past environmental variability is recorded in Palaeoclimate proxy data. In the Asian monsoon domain many records are available, e.g. from stalagmites, tree-rings or sediment cores. They have to be interpreted in the context of each other, but visual comparison is insufficient. Heterogeneous growth rates lead to uneven temporal sampling. Therefore, computing correlation values is difficult because standard methods require co-eval observation times, and sampling-dependent bias effects may occur. Climate networks are tools to extract system dynamics from observed time series, and to investigate Earth system dynamics in a spatio-temporal context. We establish paleoclimate networks to compare paleoclimate records within a spatially extended domain. Our approach is based on adapted linear and nonlinear association measures that are more efficient than interpolation-based measures in the presence of inter-sampling time variability. Based on this new method we investigate Asian Summer Monsoon dynamics for the late Holocene, focusing on the Medieval Warm Period (MWP), the Little Ice Age (LIA), and the recent period of warming in East Asia. We find a strong Indian Summer Monsoon (ISM) influence on the East Asian Summer Monsoon during the MWP. During the cold LIA, the ISM circulation was weaker and did not extend as far east. The most recent period of warming yields network results that could indicate a currently ongoing transition phase towards a stronger ISM penetration into China. We find that we could not have come to these conclusions using visual comparison of the data and conclude that paleoclimate networks have great potential to study the variability of climate subsystems in space and time.  相似文献   
9.
Al-Qilt catchment, located east of both the Ramallah and Jerusalem districts is strongly influenced by waste waters discharged from Israeli settlements and Palestinian urban centers. In this research, our aim was to verify the chemical status of the surface sediments from the Al-Qilt catchment during 2008/2009. For this purpose, 36 surface sediment samples were collected and analyzed with ICP/MS within the fraction of below 63 μm. The extent of contamination of trace metals from Al-Qilt sediments sites were measured by evaluating the contamination factors (CF) from digestion by aqua regia and additionally by sequential extraction steps using the BCR-method. On the basis of the calculated CF, sediments appear particularly contaminated with Zn, Cu, Ag, Sn, Cd, Hg, Bi, and B. Three regions, Wadi Sweanit, Ras Al-Qilt, and Qalandiah have been identified as critical points of contamination. Trace metal inputs to the Al-Qilt catchment need to be kept under strict control in the future since Ras Al-Qilt is considered as one of the important springs in the area and is used for domestic purposes. Moreover, it will be susceptible to pollution if no action is taken to decrease the pollution at the upstream of Al-Qilt.  相似文献   
10.
An investigation into high Reynolds number turbulent flow over a ridge top in New Zealand is described based on high-resolution in-situ measurements, using ultrasonic anemometers for two separate locations on the same ridge with differing upwind terrain complexity. Twelve 5-h periods during neutrally stratified and weakly stable atmospheric conditions with strong wind speeds were sampled at 20 Hz. Large (and small) turbulent length scales were recorded for both vertical and longitudinal velocity components in the range of 7–23 m (0.7–3.3 m) for the vertical direction and 628–1111 m (10.5–14.5 m) for the longitudinal direction. Large-scale eddy sizes scaled to the WRF (Weather Research and Forecasting) numerical model simulated boundary-layer thickness for both sites, while small-scale turbulent features were a function of the complexity of the upwind terrain. Evidence of a multi-scale turbulent structure was obtained at the more complex terrain site, while an assessment of the three-dimensional isotropy assumption in the inertial subrange of the spectrum showed anisotropic turbulence at the less complex site and evidence of isotropic turbulence at the more complex site, with a spectral ratio convergence deviating from the 4/3 or unity values suggested by previous theory and practice. Existing neutral spectral models can represent locations along the ridge top with simple upwind complexity, especially for the vertical wind spectra, but sites with more orographic complexity and strong vertical wind speeds are often poorly represented using these models. Measured spectra for the two sites exhibited no significant diurnal variation and very similar large-scale and small-scale turbulent length scales for each site, but the turbulence energy measured by the variances revealed a strong diurnal difference.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号