首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   2篇
地质学   7篇
  2015年   1篇
  2014年   1篇
  2013年   1篇
  2011年   2篇
  2007年   1篇
  2001年   1篇
排序方式: 共有7条查询结果,搜索用时 31 毫秒
1
1.
2.
This study investigates the morphology and Late Quaternary sediment distribution of the Makran turbidite system (Makran subduction zone, north‐west Indian Ocean) from a nearly complete subsurface mapping of the Oman basin, two‐dimensional seismic and a large set of coring data in order to characterize turbidite system architecture across an active (fold and thrust belt) margin. The Makran turbidite system is composed of a dense network of canyons, which cut into high relief accreted ridges and intra‐slope piggyback basins, forming at some locations connected and variably tortuous paths down complex slopes. Turbidite activity and trench filling rates are high even during the Holocene sea‐level highstand conditions. In particular, basin‐wide, sheet‐like thick mud turbidites, probably related to major mass wasting events of low recurrence time, drape the flat and unchannellized Oman abyssal plain. Longitudinal depth profiles show that the Makran canyons are highly disrupted by numerous thrust‐related large‐scale knickpoints (with gradients up to 20° and walls up to 500 m high). At the deformation front, the strong break of slope can lead to the formation of canyon‐mouth ‘plunge pools’ of variable shapes and sizes. The plunge pools observed in the western Makran are considerably larger than those previously described in sub‐surface successions; the first insights into their internal architecture and sedimentary processes are presented here. Large plunge pools in the western Makran are associated with large scoured areas at the slope break and enhanced sediment deposition downstream: high‐amplitude reflectors are observed inside the plunge pools, while their flanks are composed of thin‐bedded, fine‐grained turbidites deposited by the uppermost part of the turbidity flows. Thus, these architectural elements are associated with strong sediment segregation leading to specific trench‐fill mechanisms, as only the finer‐grained component of the flows is transferred to the abyssal plain. However, the Makran accretionary prism is characterized by strong along‐strike variability in tectonics and fluvial input distribution that might directly influence the turbidite system architecture (i.e. canyon entrenchment, plunge pool formation or channel development at canyon mouths), the sedimentary dynamics and the resulting sediment distribution. Channel formation in the abyssal plain and trench‐fill characteristics depend on the theoretical ‘equilibrium’ conditions of the feeder system, which is related closely to the balance between erosion rates and tectonic regime. Thus, the Makran turbidite system constitutes an excellent modern analogue for deep‐water sedimentary systems with structurally complex depocentres, in convergent margin settings.  相似文献   
3.
4.
Distinct, clay‐rich beds are common in fjord‐marine deposits in Trondheimsfjorden near the outlet of the Nidelva River. Their characteristic light‐grey colour makes the beds easily distinguishable from the surrounding brownish, bioturbated, muddy fjord sediments. The clay‐rich beds commonly display a clear stratification in clay, silt and very fine sand. The beds are interpreted as originating primarily from large quick‐clay landslides upstream along the Nidelva River. Such events resulted in a sudden increase in the supply of fines to the fjord from disintegrating landslide debris and heavily loaded effluent plumes, possibly favouring hyperpycnal flow. Typical beds can be divided into a clay‐rich lower section, reflecting an initial surge with high concentrations of suspended mud, and a sandier upper section reflecting pulses of higher energy. This development can be explained, for example, by a lowering in the supply of mud, an increasing activity of deltaic sediment gravity flows due to a higher availability of sandy sediments in the landslide‐affected river, and by flooding and/or breaching of landslide dams. The typical, stratified beds are interpreted as the result of one quick‐clay landslide, whereas exceptionally thick, less organized, stratified beds are possibly the result of several large and/or complex landslides. Radiocarbon dating of mollusc shells has helped to establish a chronology for major terrestrial landslides in the area. The frequency of landslides increases towards the end of the Holocene. This is explained by a progressively deeper incision of rivers during glacioisostatic rebound, possibly combined with a change to a wetter climate. The marine core record displays deformation structures and hiati representing submarine mass‐wasting events, and supports the evidence that the clay‐rich beds are weak layers in the fjord‐marine stratigraphy. The inherent weakness of these layers may be explained by their composition, immature texture, loose fabric and contrasting permeabilities in the deposits. Slide‐prone layers similar to the clay‐rich beds described here may be found in other comparable fjord‐marginal settings and are considered to be of importance for geohazard assessments.  相似文献   
5.
6.
A combined study of radar profiles and thin section analysis supported by modelling of synthetic radar traces reveals that ground-penetrating radar (GPR) reflections generated in diagenetically altered sandstones cannot always be interpreted unequivocally. This is illustrated in the Luxembourg Sandstone Formation, which has been altered diagenetically by selective carbonate cementation and fracturing. Cemented lenses and concretions developed along the bedding planes, especially at places with high primary carbonate content. Cementation resulted in the alternation of cemented carbonate-rich sandy layers (thickness 30–50 cm and variable length) and uncemented carbonate-poor sandstone layers. The ability of GPR to detect the geometry of these lenses and vertical fractures with centimetre apertures has been tested at several antenna frequencies (100, 200, 250 and 500 MHz). Relative dielectric permittivity calculations were carried out to assess variations of this electric property within the cemented and uncemented layers as a function of porosity, calcite and water content in the pores. Two-dimensional full waveform modelling was also carried out to study the effect of conductivity in the sandstones and the effect of interlayer clay seams. At the penetration depth of the radar (7 m with 250 MHz), cemented lenses and concretions could only be detected with GPR when the porosity contrast was sufficiently high, which is not always the case. This conclusion is supported by the modelling. The data also proved the ability of radar to detect large open vertical fractures along which sandstones are weathered. The study has implications for investigations which will use GPR to detect three-dimensional distribution of diagenetic pore filling precipitates as well as secondary porosity development along fractures.  相似文献   
7.
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号