首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   20篇
  免费   1篇
地质学   21篇
  2018年   1篇
  2017年   1篇
  2016年   1篇
  2015年   1篇
  2014年   1篇
  2013年   2篇
  2012年   1篇
  2010年   2篇
  2009年   4篇
  2008年   1篇
  2006年   2篇
  2003年   1篇
  2000年   2篇
  1996年   1篇
排序方式: 共有21条查询结果,搜索用时 31 毫秒
1.
International Journal of Earth Sciences - New Ar–Ar muscovite and Rb–Sr biotite age data in combination with structural analyses from the Apuseni Mountains provide new constraints on...  相似文献   
2.
Tibet consists of several terranes that progressively collided with the southern margin of Asia during the Mesozoic following the closure of intervening ocean basins. This Mesozoic amalgamation history, as well as the extent to which it may have contributed to crustal thickening prior to the Cenozoic Indo‐Asia collision, remains poorly constrained and strongly debated. Here, we present a metamorphic petrological and U‐Pb zircon geochronological study of the Amdo metamorphic complex, one of the few exposures of high‐grade metamorphic rocks in central Tibet, located along the Bangong suture between the Qiangtang terrane to the north and the Lhasa terrane to the south. U‐Pb ages of metamorphic zircon in gneiss constrain the timing of peak metamorphism at c. 178 Ma, prior to the Early Cretaceous collision between the two terranes. Peak P–T conditions of gneiss within the metamorphic complex are constrained by conventional as well as multi‐equilibrium (THERMOCALC v.3.21 and v.3.33) geothermobarometry of two samples of garnet‐amphibolite. Whereas THERMOCALC v.3.21 yields similar results as conventional geothermobarometry, THERMOCALC v. 3.33 yields dramatically lower pressures, mostly due to the change in the amphibole activity model used. Using THERMOCALC v.3.21, the two garnet‐amphibolite samples yield similar P–T conditions of 0.83 ± 0.06 GPa at 646 ± 33 °C and 0.97 ± 0.06 GPa at 704 ± 35 °C. Plagioclase coronas on the garnet‐amphibolite sample with lower peak P–T conditions indicate a period of isothermal decompression. Additional geothermometry on two garnet‐free amphibolites yielded similar temperatures of 700–750 °C and suggests similar P–T conditions across most of the complex. However, two exposures of garnet‐kyanite schist located along the southern edge of the metamorphic complex yielded slightly lower peak conditions of 0.75–0.85 GPa and 550–610 °C. Petrographic and field relations suggest the difference in metamorphic grade between the schist and gneiss is due to an intervening thrust fault. The existence of the thrust fault indicates that at least part of the exhumation of the complex was due to contractional deformation, possibly during the Lhasa‐Qiangtang collision. Our P–T–t results indicate the occurrence of a significant Early Jurassic tectonothermal event along the southern, active margin of the Qiangtang terrane that deeply buried the Amdo rocks. We suggest that the metamorphism is a result of arc‐related tectonism that may have been regionally extensive along the southern Qiangtang terrane; geological records of this tectonism may be rarely exposed along strike because of a lack of exhumation or subsequent depositional and structural burial.  相似文献   
3.
Synthetic CaAlSiO4F, the Al-F analog of titanite, has been investigated using single-crystal synchrotron diffraction experiments at Beamline X06DA (Swiss Light Source, Paul Scherrer Institute, Villigen, Switzerland) and Raman spectroscopy. The presented structural model with 40 parameters was refined against 506 unique reflections to a final R o b s of 0.026 (space group A2/a, a = 6.9120(11), b = 8.5010(10), c = 6.435(2) Å, β = 114.670(11)°, and Z = 4) and exhibits less distorted coordination polyhedra than earlier models from powder data. Vibrational spectra were calculated in harmonic approximation at the Γ point from fully relaxed energy optimisations of the crystal structure, using 3D-periodic density functional theory with Gaussian basis sets and the software CRYSTAL06. The lattice parameters of the fully relaxed structure were in good agreement with the experimental values, with the calculated values 0.8 ± 0.4 % too large; the monoclinic angle was calculated 0.4° too large. The agreement of the calculated Raman frequencies with the observed ones was very good, with standard deviation ±3 cm?1 and maximum deviations of ±7 cm?1. Furthermore, a detailed discussion of the atomic displacements associated with each Raman mode is given.  相似文献   
4.
In this study we report P-rich olivine and the tric-calcium phosphate (TCP) stanfieldite in partially molten quartzphyllites from the ritual immolation site at the Goldbichl, near Innsbruck in the Tyrol, Austria. During partial melting, foamy patches of dark glassy material formed at the surface of the rocks and also as layers within the rocks. The pyrometamorphic rocks contain mostly the mineral assemblage olivine + orthopyroxene + plagioclase + spinel + glass. During the investigation of slag samples from this prehistoric ritual immolation site, extremely P-rich, apatite-bearing micro-domains were found. In these domains phosphoran olivine was found whose P contents are approaching the maximum P contents in olivine according to the experimental investigations of Boesenberg and Hewins (Geochim Cosmochim Acta 74:1923–1941, 2010). The textures within these domains indicate strongly disequilibrium conditions. The phosphoran olivines formed due to reactions involving apatite and the mineral assemblage of the quartzphyllites, and coexist with plagioclase and a tri-calcium phosphate phase (TCP) showing stanfieldite Ca4(Mg, Fe2+, Mn2+)5(PO4)6 composition. In terms of its chemical composition, olivine shows a wide range in composition with P ranging from 0.3 to 0.54 a.p.f.u, which corresponds to maximal 23 wt.% P2O5. These are the highest P-contents in olivine reported from rocks so far. The incorporation of P correlates with decreasing Si contents according to the charge balancing scheme $ 2{{\mathrm{P}}^{5+ }}+□{{\mathrm{M}}_{1,2 }}=2\mathrm{S}{{\mathrm{i}}^{4+ }}+{{\left( {\mathrm{M}\mathrm{g},\mathrm{Fe}} \right)}^{2+ }}{{\mathrm{M}}_{1,2 }} $ . Therefore P can only be incorporated in combination with a vacancy on the M1,2 position. Micro-Raman spectroscopy of phosphoran olivines indicates that these olivines can easily be identified with this method due to the strong signals of the SiO4 and PO4 vibrations. The external vibrations of the M1,2 sites at low wave-numbers are more complex than for P-free olivine. This might be due to the effect of P5+ on the M1 2+ and M2 2+ positions and the formation of vacancies on these sites. Since micro-Raman investigations of the TCP phase yielded no conclusive match with a known Raman spectrum of a phosphate mineral so far, therefore it is most likely that the TCP phase is stanfieldite, whose Raman spectrum has not been obtained yet. Schematical Schreinemakers analysis in the system CaO-Al2O3-FeO-SiO2-P2O5-H2O shows that P-rich olivine (fayalite-sarcopside solid solution) can form from mineral reactions involving chlorite, apatite and quartz and show that the occurrence of P-rich Fe-olivines spans a large T-range but is restricted to domains with high aSiO2. The mineral assemblage in the P-rich micro-domains shows that the formation of phosphoran olivine is not only restricted to the interaction between bone material and rocks in slags from ritual immolation sites as suggested by Tropper et al. (Eur J Mineral 16:631–640, 2004) from the immolation site in Oetz but can form locally due to the pyrometamorphic breakdown of a P-rich accessory precursor phase such as apatite.  相似文献   
5.
Eclogites in the Texel Unit (Eastern Alps; South Tyrol, Italy) represent the westernmost outcrops of the E–W striking Eoalpine High‐Pressure Belt (EHB). East of the Tauern Window, the EHB forms part of a Cretaceous intracontinental south‐dipping subduction/collision zone; however, the same nappe stack displays a northwest dip at its western end. This prominent change in dip direction gave rise to discussions on the general setting of the Eoalpine collision. Based on our own observations and literature data, we present a new tectonic model for the western end of the EHB. Due to the special situation of this area at the tip of the Southalpine indenter, originally south(east) dipping structures became overturned, and former thrusts appear as normal faults (e.g. Schneeberg fault zone) while former normal faults presently display thrust geometries (e.g. Jaufen fault). Thus, we explain the current configuration with a coherent Eoalpine subduction direction.  相似文献   
6.
The Sauwald area is located at the southern rim of the Bohemian Massif and contains migmatites and high-grade metapelitic and granitic gneisses. These rocks were metamorphosed during the post-collisional high-T/low-P stage of the Variscan metamorphic event (~330 Ma). Metapelitic samples were taken from two localities near Kössldorf and Pyret in Upper Austria and the investigated samples contain the mineral assemblage garnet + cordierite + spinel + sillimanite + K-feldspar + quartz + biotite + muscovite + magnetite + graphite. An important aspect of this study is the evaluation of previously published P-T estimates for these high-grade metapelites (Knop et al. 1995; Tropper et al. 2006) involving Ti-in-biotite, Na-in-cordierite thermometry and the micro-Raman thermometer based upon the degree of crystallization of carbonaceous material. In the two samples studied three texturally and chemically different biotites are distinguished. Biotite inclusions in garnet have the highest Ti contents of 5–6 wt.% TiO2. Matrix biotites contain 2–4 wt.% TiO2 and biotites from late-stage muscovite-biotite symplectites contain <2 wt.% TiO2. This corresponds to temperatures of 730–760°C (stage 1), 600–700°C (stage 2), and 550–610°C (stage 3). Since the Ti-in-biotite thermometer strongly depends on X Mg of biotite, which is susceptible to changes during retrogression the calculated temperatures for stage 1 are interpreted as minimum temperatures of the peak metamorphic stage. The Na contents of the studied cordierites vary from 0.1 to 0.2 wt.% Na2O. Application of the Na-in-cordierite thermometer yields temperatures in the range of 770–900°C; they are strongly dependent on the bulk Na2O content of the samples. The micro-Raman geothermometer of graphite was applied to carbonaceous material, which occurs as inclusions in garnet and cordierite. It yielded a maximum temperature >650°C, i.e. above the calibration limit of this method. This study shows that the obtained temperature estimates agree well with the P-T estimates based on phase equilibrium thermobarometry (Knop et al. 1995; Tropper et al. 2006), thus illustrating the validity of these thermometers. Nevertheless in order to more precisely constrain the metamorphic evolution of these high-grade rocks, better constrained experimental calibrations of, for instance the Na-in-cordierite thermometer, are clearly needed.  相似文献   
7.
Mineralogy and Petrology - The aim of this experimental study was to investigate the incorporation of Na in cordierite in metapelites as a function of temperature and pressure using natural...  相似文献   
8.
Magnesioferrite-rich spinels were found in the Cretaceous Jianguo trachyandesite in northeastern China. The trachyandesite is comprised of augite, plagioclase, K-feldspar, spinel, phlogopite, apatite, zircon, and pseudomorphed phenocrysts, which are interpreted as former olivine and/or orthopyroxene crystals and now consist of a mixture of chrysotile, antigorite and chlorite. Texturally, four stages of spinel growth are observed: magnesioferrite-rich spinel-I occurs within the pseudomorphs and magnesioferrite-rich spinel-II occurs in the matrix of the trachyandesite. Magnetite-rich spinel-III occurs either as rim around spinel-II or as distinct magnetite grains, whereas worm—like magnetite—rich spinel-IV occurs within the pseudomorphs. Chemically, spinel-I contains 51 to 82 mol.% magnesioferrite component, spinel-II contains a magnesioferrite component ranging from 60 to 79 mol% and spinel-III contains less than 15 mol.% magnesioferrite component. In contrast to spinel II, spinel-I is poor in TiO2 but rich in Cr2O3, MnO and NiO. Two-feldspar thermometry yields temperatures of 880–1000°C for the formation of the trachyandesite matrix assemblage. In the absence of olivine and/or orthopyroxene, Schreinemakers analysis of T-fO2 model phase relations indicate that magnesioferrite-rich spinels-I, and II are stable at high T and high fO2. Magnetite-rich spinel-III formed under more reducing conditions, while spinel-IV most likely formed during subsolidus late-stage alteration of olivine and/or magnesioferrite phenocrysts. Semi quantitative fO2 calculations using the oxygen barometer of Ballhaus et al. (1991) yielded fO2 >7 log units above QFM, which excludes a mantle origin of these magnesioferrites. Thus oxidation of these trachyandesites most likely occurred at some stage during melt ascent, or in a differentiating magma chamber or even after emplacement of these still hot magmas at near surface conditions.  相似文献   
9.
Reaction rims of titanite on ilmenite are described in samples from four terranes of amphibolite-facies metapelites and amphibolites namely the Tamil Nadu area, southern India; the Val Strona area of the Ivrea-Verbano Zone, northern Italy, the Bamble Sector, southern Norway, and the northwestern Austroalpine Ötztal Complex. The titanite rims, and hence the stability of titanite (CaTiSiO4O) and Al–OH titanite, i.e. vuaganatite (hypothetical end-member CaAlSiO4OH), are discussed in the light of fH2O- and fO2-buffered equilibria involving clinopyroxene, amphibole, biotite, ilmenite, magnetite, and quartz in the systems CaO–FeO/Fe2O3–TiO2–SiO2–H2O–O2 (CFTSH) and CaO–FeO/Fe2O3–Al2O3–SiO2–H2O–O2 (CFASH) present in each of the examples. Textural evidence suggests that titanite reaction rims on ilmenite in rocks from Tamil Nadu, Val Strona, and the Bamble Sector originated most likely due to hydration reactions such as clinopyroxene + ilmenite + quartz + H2O = amphibole + titanite and oxidation reactions such as amphibole + ilmenite + O2 = titanite + magnetite + quartz + H2O during amphibolite-facies metamorphism, or, as in the case of the Ötztal Complex, during a subsequent greenschist-facies overprint. Overstepping of these reactions requires fH2O and fO2 to be high for titanite formation, which is also in accordance with equilibria involving Al–OH titanite. This study shows that, in addition to P, T, bulk–rock composition and composition of the coexisting fluid, fO2 and fH2O also play an important role in the formation of Al-bearing titanite during amphibolite- and greenschist-facies metamorphism.  相似文献   
10.
The Brixen Granodiorite is part of the Permian calc-alkaline plutonic association (Brixen Granodiorite, Ifinger Granite, Kreuzberg Granite, Cima d’Asta Granitoid) that intruded the Variscan Southalpine metamorphic basement. The Brixen Granodiorite is located to the south of the Periatriatic Lineament in the eastern part of the Southalpine basement complex and comprises a series of tonalitic, granitic and granodioritc intrusions, which were emplaced during the Permian (280?Ma) into the country rocks of the Brixen Quarzphyllites. The depth of these Southalpine granodioritic intrusions was less than 10?km (P?≤?0.3?GPa) and solidus temperatures were 670–720?°C (Visona, Mem Sci Geol 47:111–124, 1995; Acquafredda et al., Miner Petrogr Acta XL:45–53, 1997; Wyhlidal et al., Austr J Earth Sci 102:181–192, 2009). Only a small, about 200?m wide, contact aureole formed at the southern rim of the Brixen Granodiorite near the village Franzensfeste/Fortezza (South-Tyrol, Italy). Within the contact aureole four different zones can be distinguished based upon mineralogical, mineral chemical and textural features. Approximately 200?m from the granite contact zone I occurs. The rocks from this zone are macroscopically still quartzphyllites and are characterized by two texturally and chemically different generations of micas (muscovite, biotite) and the appearance of cordierite. Zone II is characterized by quartzphyllites containing pseudomorphs of cordierite + biotite after garnet. The inner contact aureole (zone III) starts approximately 50?m from the granite contact and shows already typical hornfels textures. This zone is characterized by the first occurrence of andalusite. In the innermost area (zone IV), ca 10?m from the granite contact, spinel and corundum occur. Geothermometry (two-feldspar-, Ti-in-biotite) yielded an increase in temperature from 540?°C in the outermost aureole (zone I) to <740?°C in the innermost aureole (zone IV). Pseudosection modelling of hornfelses from zones III and IV also resulted in similar P-T conditions of <0.28?GPa and <620?°C. This contact aureole represents one of the few well-developed remaining areas of Permian contact metamorphism in the Southalpine domain, which are otherwise mostly obliterated by late-stage hydrothermal alteration in the course of the Alpine tectonic overprint.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号