首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   66篇
  免费   5篇
测绘学   4篇
大气科学   5篇
地球物理   22篇
地质学   20篇
海洋学   1篇
天文学   9篇
自然地理   10篇
  2020年   3篇
  2019年   1篇
  2018年   3篇
  2017年   4篇
  2016年   2篇
  2015年   3篇
  2014年   5篇
  2013年   1篇
  2012年   2篇
  2011年   2篇
  2010年   5篇
  2009年   4篇
  2008年   5篇
  2007年   1篇
  2006年   3篇
  2005年   2篇
  2004年   2篇
  2003年   6篇
  1999年   3篇
  1998年   1篇
  1997年   1篇
  1996年   2篇
  1995年   2篇
  1991年   1篇
  1988年   1篇
  1987年   1篇
  1985年   1篇
  1982年   1篇
  1980年   1篇
  1978年   1篇
  1971年   1篇
排序方式: 共有71条查询结果,搜索用时 31 毫秒
1.
International Journal of Earth Sciences - New Ar–Ar muscovite and Rb–Sr biotite age data in combination with structural analyses from the Apuseni Mountains provide new constraints on...  相似文献   
2.
Deglacial sequences typically include backstepping grounding zone wedges and prevailing glaciomarine depositional facies. However, in coastal domains, deglacial sequences are dominated by depositional systems ranging from turbiditic to fluvial facies. Such deglacial sequences are strongly impacted by glacio‐isostatic rebound, the rate and amplitude of which commonly outpaces those of post‐glacial eustatic sea‐level rise. This results in a sustained relative sea‐level fall covering the entire depositional time interval. This paper examines a Late Quaternary, forced regressive, deglacial sequence located on the North Shore of the St. Lawrence Estuary (Portneuf Peninsula, Québec, Canada) and aims to decipher the main controls that governed its stratigraphic architecture. The forced regressive deglacial sequence forms a thick (>100 m) and extensive (>100 km2) multiphased deltaic complex emplaced after the retreat of the Laurentide Ice Sheet margin from the study area ca 12 500 years ago. The sedimentary succession is composed of ice‐contact, glaciomarine, turbiditic, deltaic, fluvial and coastal depositional units. A four‐stage development is recognized: (i) an early ice‐contact stage (esker, glaciomarine mud and outwash fan); (ii) an in‐valley progradational stage (fjord head or moraine‐dammed lacustrine deltas) fed by glacigenics; (iii) an open‐coast deltaic progradation, when proglacial depositional systems expanded beyond the valley outlets and merged together; and (iv) a final stage of river entrenchment and shallow marine reworking that affected the previously emplaced deltaic complex. Most of the sedimentary volume (10 to 15 km3) was emplaced during the three‐first stages over a ca 2 kyr interval. In spite of sustained high rates of relative sea‐level fall (50 to 30 mm·year?1), delta plain accretion occurred up to the end of the proglacial open‐coast progradational stage. River entrenchment only occurred later, after a significant decrease in the relative sea‐level fall rates (<30 mm·year?1), and was concurrent with the formation and preservation of extensive coastal deposits (raised beaches, spit platform and barrier sands). The turnaround from delta plain accretion to river entrenchment and coastal erosion is interpreted to be a consequence of the retreat of the ice margin from the river drainage basins that led to the drastic drop of sediment supply and the abrupt decrease in progradation rates. The main internal stratigraphic discontinuity within the forced regressive deglacial sequence does not reflect changes in relative sea‐level variations.  相似文献   
3.
4.
We reformulate the equation of reverse‐time migration so that it can be interpreted as summing data along a series of hyperbola‐like curves, each one representing a different type of event such as a reflection or multiple. This is a generalization of the familiar diffraction‐stack migration algorithm where the migration image at a point is computed by the sum of trace amplitudes along an appropriate hyperbola‐like curve. Instead of summing along the curve associated with the primary reflection, the sum is over all scattering events and so this method is named generalized diffraction‐stack migration. This formulation leads to filters that can be applied to the generalized diffraction‐stack migration operator to mitigate coherent migration artefacts due to, e.g., crosstalk and aliasing. Results with both synthetic and field data show that generalized diffraction‐stack migration images have fewer artefacts than those computed by the standard reverse‐time migration algorithm. The main drawback is that generalized diffraction‐stack migration is much more memory intensive and I/O limited than the standard reverse‐time migration method.  相似文献   
5.
Water quality is a key aspect of the Everglades Restoration Project, the largest water reclamation and ecosystem management project proposed in the United States. Movement of nutrients and contaminants to and from Everglades peat porewater could have important consequences for Everglades water quality and ecosystem restoration activities. In a study of Everglades porewater, we observed complex, seasonally variable peat porewater chloride concentration profiles at several locations. Analyses and interpretation of these changing peat porewater chloride concentration profiles identifies processes controlling conservative solute movement at the peat–surface water interface, that is, solutes whose transport is minimally affected by chemical and biological reactions. We examine, with an advection–diffusion model, how alternating wet and dry climatic conditions in the Florida Everglades mediate movement of chloride between peat porewater and marsh surface water. Changing surface water–chloride concentrations alter gradients at the interface between peat and overlying water and hence alter chloride flux across that interface. Surface water chloride concentrations at two frequently monitored sites vary with marsh water depth, and a transfer function was developed to describe daily marsh surface water chloride concentration as a function of marsh water depth. Model results demonstrate that porewater chloride concentrations are driven by changing surface water chloride concentrations, and a sensitivity analysis suggests that inclusion of advective transport in the model improves the agreement between the calculated and the observed chloride concentration profiles. Published in 2007 by John Wiley & Sons, Ltd.  相似文献   
6.
7.
Traditionally, the surveillance component of the air traffic management system has been based on radar, which consists of two separate systems: primary radar and secondary radar, which both enable the measurement of the aircraft range and bearing to the radar station. Primary radar is based on signals emitted by a ground station simply being reflected off an object and detected by a ground-based receiver. Secondary radar also emits signals, but relies upon a transponder onboard the aircraft to emit a signal itself, modulated among others by a four-digit aircraft identity (Mode A), aircraft altitude (Mode C) and/or 24-bit unique address (Mode S). Typical accuracies of secondary radar are of the order of 0.03 NM in range and 0.07° in azimuth. However, no position integrity report is provided. Air traffic density is expected to significantly increase in the future. In order to maintain or enhance air travel efficiency, while maintaining safety, more accurate surveillance systems, with the required integrity, will be required. Automatic dependent surveillance–broadcast (ADS-B) is a new aviation surveillance system, envisioned to overcome the limitations of radar and to enhance surveillance performance and thereby increase airspace capacity. However, its high dependence on external systems such as onboard navigation and communication systems also increases the number of potential points of failure. It is important to understand and mitigate these failure modes before the system can reliably be implemented. The present study emerged as an exploratory research as part of a safety assessment framework development for the ADS-B system. It reviews the ADS-B failure modes, data collection and analysis of ADS-B and its corresponding onboard GPS data. The study identifies a set of failures common to certain aircraft models, with consistent error patterns. A key failure mode was found to be associated with the navigation data from the onboard GPS. We discuss the identified failure modes and investigate the nature and causes of these failures. The findings highlight some of the deficiencies of the current ADS-B system, which will need to be addressed before the ADS-B system can reliably be implemented.  相似文献   
8.
Ice-core samples from Upper Fremont Glacier (UFG), Wyoming, were used as proxy records for the chemical composition of atmospheric deposition. Results of analysis of the ice-core samples for stable isotopes of nitrogen (δ15N, ) and sulfur (δ34S, ), as well as and deposition rates from the late-1940s thru the early-1990s, were used to enhance and extend existing National Atmospheric Deposition Program/National Trends Network (NADP/NTN) data in western Wyoming. The most enriched δ34S value in the UFG ice-core samples coincided with snow deposited during the 1980 eruption of Mt. St. Helens, Washington. The remaining δ34S values were similar to the isotopic composition of coal from southern Wyoming. The δ15N values in ice-core samples representing a similar period of snow deposition were negative, ranging from -5.9 to -3.2 ‰ and all fall within the δ15N values expected from vehicle emissions. Ice-core nitrate and sulfate deposition data reflect the sharply increasing U.S. emissions data from 1950 to the mid-1970s.  相似文献   
9.
Using an Atmospheric Global Circulation Model, we assess the relevance of selected atmospheric mechanisms for climate evolution of Saharan and sub-Saharan regions since the Miocene. First, we test the influence of the East-African Rift System uplift on atmospheric dynamics. Although the uplift played an important role in triggering East-African rainfall, no significant impact over central and western Africa has been detected. We also analyse the feedbacks of a giant lake on the climate of Chad basin. First results infer a negative feedback of the giant lake on the water balance, as convection is weakened by the cold water surface and as water evaporated from the lake does not feed the basin hydrological cycle. Lastly, we suggest that colder than present sea surface temperatures over the Gulf of Guinea reinforce the West-African monsoon, by enhancing the moisture advection engine via stronger thermal contrast between the ocean and the continent.  相似文献   
10.
The binding forms of Cd to an anaerobic sediment of low sulfide content from Lauffen reservoir (River Neckar, Germany) were studied using two different approaches, i. e. sequential extraction (modified from published protocols) and titrimetric study of the pH-dependent Cd release. Thermodynamic equilibrium calculations were applied to calculate both the release pattern of Cd during the titrations and the speciation of Cd within the single fractions of the extraction protocol. The calculations were based on measured sediment parameters such as hydrous ferric oxide (HFO), acid volatile sulfide, carbonate content and total Cd content, and the extractants (oxalate, acid etc.) used. The results of the two independent approaches coincided well in that they both assigned more than two thirds of the total Cd content to be adsorbed to organic matter. Cd bound as CdS is of little importance. Sequential extraction after a 3-month oxidation period at pH 7 revealed a shift of Cd from being mainly bound in stronger surface complexes with organic matter to being mainly bound in weaker surface complexes with organic matter and HFO, and thus becoming more bioavailable. This study suggests that the use of sequential extraction although being frequently criticized due to its operational character can be used to determine binding forms of metal ions if they are accompanied by 1) careful supporting experiments, 2) analysis of important sediment parameters, and 3) the use of thermodynamic equlibrium models which can help to understand Cd speciation within the extraction fractions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号