首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
  国内免费   2篇
大气科学   4篇
海洋学   2篇
自然地理   1篇
  2017年   1篇
  2015年   1篇
  2014年   1篇
  2013年   2篇
  2009年   1篇
  2003年   1篇
排序方式: 共有7条查询结果,搜索用时 15 毫秒
1
1.
The 3-hour-interval prediction of ground-level temperature from 00 h out to 45 h in South Korea(38 stations) is performed using the DLM (dynamic linear model) in order to eliminate the systematic error of numerical model forecasts. Numerical model forecasts and observations are used as input values of the DLM. According to the comparison of the DLM forecasts to the KFM (Kalman filter model) forecasts with RMSE and bias, the DLM is useful to improve the accuracy of prediction.  相似文献   
2.
Shallow gas in the Korea Strait shelf mud (KSSM) off SE Korea, revealed by high-resolution subbottom profiles, is associated with acoustic blanking, acoustic turbidity, seepages with plumes in the water column, and seafloor depressions. The acoustic blanking, characterized by strong, consistent top reflection and wipeout below, is most dominant. The seaward edge of the acoustic blanking zone generally coincides with the 100-m water-depth contour, suggesting that the water depth (the pressure) may control the distribution of shallow gas. The acoustic turbidity, characterized by diffuse top reflection, is a dark smear, partially blanking the data below. The seepages with plumes, characterized by vertical smearing and disturbed seafloor, are seen only along the shallowest, landward edge of the acoustic blanking zone. This may suggest that the decreased gas solubility at shallow water depths, caused by the lowered pressure, increases the volume of free gas in the sediments, facilitating the gas escape. The seafloor depressions, interpreted as pockmarks, are accompanied by cone-shaped acoustic masking, which is probably the reflection from a narrow vent of gas. The gas-related acoustic anomalies appear to occur mostly in the upper, recent mud of the KSSM. Neither permeable beds nor faults, which can act as vertical migration pathways for deep thermogenic gas, are evident in the recent mud. We interpret that the bacterial degradation of organic matter in situ is the main source for the gas in the KSSM. The upwelling off SE Korea may be an important source for the increased organic matter in the area.  相似文献   
3.
中国的韩国旅游研究进展与展望   总被引:2,自引:0,他引:2  
自中韩正式建交以来,两国之间旅游交流的迅速发展促进了中国旅游学界对韩国旅游相关方面的研究.文章以中国知识资源总库的四个主要子数据库为基础检索了1994年以来发表在中国大陆与韩国旅游相关的研究文献,并通过内容分析法对此进行了系统的归纳、分析和总结,认为目前中国旅游学界对韩国旅游相关方面的研究主要集中在三个领域:韩国赴中国旅游市场分析与开发、韩国旅游业成功经验分析与借鉴以及中韩旅游交流与合作;存在三个主要问题:研究动机的行业推动性、研究方法的单一性和研究内容的肤浅性;在此基础上提出了一个中国的韩国旅游研究概念框架.指出了未来应进一步拓宽研究视角、深化研究内容,采取更加科学的方法重点研究韩国旅游者行为、中韩旅游区域合作与竞争等主题.  相似文献   
4.
East Asian (EA) summer monsoon shows considerable differences in the mean state and principal modes of interannual variation between early summer (May–June, MJ) and late summer (July–August, JA). The present study focuses on the early summer (MJ) precipitation variability. We find that the interannual variation of the MJ precipitation and the processes controlling the variation have been changed abruptly around the mid-1990s. The rainfall anomaly represented by the leading empirical orthogonal function has changed from a dipole-like pattern in pre-95 epoch (1979–1994) to a tripole-like pattern in post-95 epoch (1995–2010); the prevailing period of the corresponding principal component has also changed from 3–5 to 2–3 years. These changes are concurrent with the changes of the corresponding El Nino-Southern Oscillation (ENSO) evolutions. During the pre-95 epoch, the MJ EA rainfall anomaly is coupled to a slow decay of canonical ENSO events signified by an eastern Pacific warming, which induces a dipole rainfall feature over EA. On the other hand, during the post-95 epoch the anomalous MJ EA rainfall is significantly linked to a rapid decay of a central Pacific warming and a distinct tripolar sea surface temperature (SST) in North Atlantic. The central Pacific warming-induced Philippine Sea anticyclone induces an increased rainfall in southern China and decreased rainfall in central eastern China. The North Atlantic Oscillation-related tripolar North Atlantic SST anomaly induces a wave train that is responsible for the increase northern EA rainfall. Those two impacts form the tripole-like rainfall pattern over EA. Understanding such changes is important for improving seasonal to decadal predictions and long-term climate change in EA.  相似文献   
5.
To understand the effects of the Yellow Sea Cold Bottom Water(YSCBW)on the diel vertical migration(DVM)of the copepod Calanus sinicus,we surveyed vertical distribution of C.sinicus at a fixed station in the Yellow Sea before(spring)and during(summer)formation of the YSCBW.Cold water(<10 C)was observed in the bottom layer when the water column was thermally stratified in summer,but the water column was thermally well-mixed in spring 2010.Samples were collected from five different layers at 3-h intervals using an opening-closing net.Adult females(1–155 ind./m3)showed a clear normal DVM pattern throughout the entire water column in spring,whereas adult males did not migrate.DVM of copepodite V(CV)individuals was not clear,but the maximum abundance of CI–CIV occurred consistently in the upper 10–20 m layer,where there was a high concentration of chlorophyll-a(Chl-a)(0.49–1.19μg/L).In summer,weak DVM was limited to cold waters beneath the thermocline for adult females(<30 ind./m3),but not for adult males.The maximum abundance of CI–CIV also occurred consistently in the subsurface layer(20–40 m)together with high concentrations of Chl-a(0.81–2.36μg/L).CV individuals(1–272 ind./m3)moved slightly upward nocturnally to the near-surface layer(10–20 m),where the average temperature was 25.74 C,but they were not found in the surface layer(0–10 m;28.31 C).These results indicate that the existence of the YSBCW affected food availability at depth and the vertical temperature distribution,leading to variation in the amplitude and shape of stage-specific vertical distributions(CI to adults)in C.sinicus before and during the formation of cold waters in the Yellow Sea during the study period.  相似文献   
6.
7.
Changma, which is a vital part of East Asian summer monsoon (EASM) system, plays a critical role in modulating water and energy cycles in Korea. Better understanding of its long-term variability and change is therefore a matter of scientific and societal importance. It has been indicated that characteristics of Changma have undergone significant interdecadal changes in association with the mid-1970s global-scale climate shift and the mid-1990s EASM shift. This paper reviews and revisits the characteristics on the long-term changes of Changma focusing on the underlying mechanisms for the changes. The four important features are manifested mainly during the last few decades: 1) mean and extreme rainfalls during Changma period from June to September have been increased with the amplification of diurnal cycle of rainfall, 2) the dry spell between the first and second rainy periods has become shorter, 3) the rainfall amount as well as the number of rainy days during August have significantly increased, probably due to the increase in typhoon landfalls, and 4) the relationship between the Changma rainfall and Western Pacific Subtropical High on interannual time scale has been enhanced. The typhoon contribution to the increase in heavy rainfall is attributable to enhanced interaction between typhoons and midlatitude baroclinic environment. It is noted that the change in the relationship between Changma and the tropical sea surface temperature (SST) over the Indian, Pacific, and Atlantic Oceans is a key factor in the long-term changes of Changma and EASM. Possible sources for the recent mid-1990s change include 1) the tropical dipole-like SST pattern between the central Pacific and Indo-Pacific region (the global warming hiatus pattern), 2) the recent intensification of tropical SST gradients among the Indian Ocean, the western Pacific, and the eastern Pacific, and 3) the tropical Atlantic SST warming.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号